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Harvard University

Paola Conconi
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A-1 Theoretical Appendix

A-1.1 Derivation of Program (7)

In this Appendix, we provide more details on firm behavior conditional on the path of ownership structure

along the value chain. Notice first that solving program (5), we obtain the following optimal choice of

investment by the supplier at stage m:

x(m) =

[
(1− β (m)) ρ

(
A1−ρθρ

)α
ρ r (m)

ρ−α
ρ

ψ (m)
α

c (m)

] 1
1−α

.

Plugging this express into the marginal contribution function r′(m) = ρ
α

(
A1−ρθρ

)α
ρ r(m)

ρ−α
ρ ψ (m)

α
x(m)α

delivers the following separable differential equation:

r′(m) =
ρ

α

(
A1−ρθρ

) α
ρ(1−α) r(m)

ρ−α
ρ(1−α)

(
ρ

(1− β (m))ψ (m)

c (m)

) α
1−α

.

It is straightforward to verify that the solution to this differential equation (with the initial condition r(0) = 0)

is given by:

r (m) = Aθ
ρ

1−ρ

(
1− ρ
1− α

) ρ(1−α)
α(1−ρ)

ρ
ρ

1−ρ

[∫ m

0

(
(1− β (i))ψ (i)

c (i)

) α
1−α

di

] ρ(1−α)
α(1−ρ)

, (A-1)

from which we can obtain the expression for x∗(m) in equation (6).

The firm thus chooses the path of β (i) that maximizes its profits πF =
∫ 1

0
β(i)r′(i)di. Differentiating

(A-1) and substituting into πF , we can express this profit function as:

πF = Aθ
ρ

1−ρ
ρ

α

(
1− ρ
1− α

) ρ−α
α(1−ρ)

ρ
ρ

1−ρ

∫ 1

0

β(i)

(
(1− β(i))ψ (i)

c (i)

) α
1−α

[∫ i

0

(
(1− β(k))ψ (k)

c (k)

) α
1−α

dk

] ρ−α
α(1−ρ)

di,

which coincides with the expression in program (7) in the main text.

A-1.2 Derivation of Equation (10)

As pointed out in the main text, we can express program (7) as a standard calculus of variation problem

where the firm chooses the real-value function v that maximizes the functional:

πF (v) = Θ

∫ 1

0

(
1− v′ (i)

1−α
α

c (i)

ψ (i)

)
v′ (i) v (i)

ρ−α
α(1−ρ) di,

where Θ = Aθ
ρ

1−ρ ρ
α

(
1−ρ
1−α

) ρ−α
α(1−ρ)

ρ
ρ

1−ρ , and:

v (i) ≡
∫ i

0

(
(1− β (k))ψ (k)

c (k)

) α
1−α

dk. (A-2)

The Euler-Lagrange equation associated with this problem is given by:

ρ− α
α(1− ρ)

[
1− v′(i)

1−α
α

c (i)

ψ (i)

]
v′ (i) [v (i)]

ρ−α
α(1−ρ)−1 =

d

di

[
v (i)

ρ−α
α(1−ρ)

(
1− 1

α
v′(i)

1−α
α

c (i)

ψ (i)

)]
,
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which after a few manipulations can be reduced to the following differential equation:

ρ− α
1− ρ

v′ (i)

v (i)
+
v′′(i)

v′(i)
= − α

1− α
d (c (i) /ψ (i)) /di

c (i) /ψ (i)
. (A-3)

To solve (A-3), integrate both sides with respect to i, and exponentiate to get:

v′ (i) v (i)
ρ−α
1−ρ = C1 (ψ (i) /c (i))

α
1−α , (A-4)

where C1 > 0 is a constant of integration. Given the definition of v (i) in (A-2), equation (A-4) can be

rewritten as:

(1− β (i))
α

1−α = C1

(∫ i

0

(
(1− β (k))ψ (k)

c (k)

) α
1−α

dk

)α−ρ
1−ρ

. (A-5)

Denoting z (i) ≡ (1− β (i))
α

1−α , we can express (A-5) as:

(
z (i)

C1

) 1−ρ
α−ρ

=

∫ i

0

z (k)

(
ψ (k)

c (k)

) α
1−α

dk, (A-6)

which after differentiation delivers:

1− ρ
α− ρ

(
z (i)

C1

) 1−ρ
α−ρ z′ (i)

z (i)
= z (i)

(
ψ (i)

c (i)

) α
1−α

.

This change of variable has thus allowed us to arrive at a separable differential equation in z(i), which has

solution:

z (m)
1−α
α−ρ − z (0)

1−α
α−ρ = (C1)

1−ρ
α−ρ

(
1− α
1− ρ

)[∫ m

0

(
ψ (k)

c (k)

) α
1−α

dk

]
.

To simplify the above, note that (A-6) implies z (0)
1−α
α−ρ = 0. Recalling the definition z (m) ≡ (1− β (m))

α
1−α ,

and imposing the transversality condition:

1− 1

α
v′ (1)

1−α
α

c (1)

ψ (1)
= 0 =⇒ 1− β (1) = α,

we finally obtain the full solution as spelled out in equation (10) in the main text.

A-1.3 Proof of Proposition 1

The proof is a generalization of that for Proposition 2 in Antràs and Chor (2013). It is straightforward to

see from equation (10), that when ρ > α, limm→0 β
∗ (m) → −∞, and it is thus optimal for the firm to

choose βO (namely outsourcing) for the most upstream stages in the neighborhood of m = 0. Conversely,

when ρ < α, limm→0 β
∗ (m) = 1, and it is optimal for the firm to choose βV (namely integration) for those

upstream stages in the neighborhood of m = 0.

To fully establish Proposition 1 for the case ρ > α, we proceed to show that we cannot have a positive

measure of integrated stages located upstream relative to a positive measure of outsourced stages in the

optimal organizational structure. Since the limit values above indicate that stage 0 will be outsourced, it

follows that if any stages are to be integrated, they have to be downstream relative to all outsourced stages.

In other words, there exists an optimal cutoff m∗C ∈ (0, 1] such that all stages in [0,m∗C) are outsourced and

stages in [m∗C , 1] are integrated. (If m∗C = 1, then all stages along the production line are outsourced.)
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We establish the above by contradiction. Suppose that, contrary to the claim in Proposition 1, there

were to exist a stage m̃ ∈ (0, 1) such that a measurable set of stages immediately upstream from m̃ are

integrated, while a measurable set of stages immediately downstream from m̃ are outsourced. Now consider

two positive constants εL and εR such that:∫ m̃

m̃−εL
(ψ (i) /c (i))

α/(1−α)
di =

∫ m̃+εR

m̃

(ψ (i) /c (i))
α/(1−α)

di. (A-7)

These constants can always be chosen to be small enough such that they satisfy (A-7), and moreover are

such that the set of stages (m̃ − εL, m̃) is integrated, while stages in (m̃, m̃ + εR) are outsourced. Denote

by Π1 firm profits under this suggested ownership structure. We shall consider an alternative organizational

mode in which the firm instead chooses to outsource the stages in (m̃ − εL, m̃) and to integrate the stages

in (m̃, m̃ + εR), while retaining the same organizational decision for all other stages in the unit interval.

Denote the profits of this alternative organizational form by Π2. We will now show that this reorganization

necessarily increases firm profits, i.e., Π1 < Π2, so that the posited deviation from the optimal pattern in

Proposition 1 is inconsistent with profit maximization.

Note that we can rewrite firm profits in (7) as:

πF = Θ
α(1− ρ)

ρ (1− α)

∫ 1

0

β(i)

∂

([∫ i
0

((1− β (k))ψ (k) /c (k))
α

1−α dk
] ρ(1−α)
α(1−ρ)

)
∂i

di. (A-8)

It is useful to distinguish four regions in the set of stages: (i) all stages upstream from m̃− εL; (ii) those in

(m̃− εL, m̃); (iii) those in (m̃, m̃+ εR); and (iv) all stages downstream from m̃+ εR. Note that the profits

generated by all stages in the first region are common for the profit functions Π1 and Π2, so we can ignore

them hereafter. Less trivially, the profits generated in the last region are also common in the profit functions

Π1 and Π2. To see this, and to keep the notation manageable, define:

γ (i) = (ψ (i) /c (i))
α

1−α ,

A =

∫ m̃−εL

0

((1− β (k))ψ (k) /c (k))
α

1−α dk, and

D =

∫ i

m̃+εR

((1− β (k))ψ (k) /c (k))
α

1−α dk.

Notice that in light of equation (A-8), the part of profits Π1 associated with stages m > m̃+ εR is:

Θ
α(1− ρ)

ρ (1− α)

∫ 1

m̃+εR

β(i)
∂

∂i

(
A+ (1− βV )

α
1−α

∫ m̃

m̃−εL
γ (k) dk + (1− βO)

α
1−α

∫ m̃+εR

m̃

γ (k) dk +D

) ρ(1−α)
α(1−ρ)

di,

while for profits Π2, these same profits are given by:

Θ
α(1− ρ)

ρ (1− α)

∫ 1

m̃+εR

β(i)
∂

∂i

(
A+ (1− βO)

α
1−α

∫ m̃

m̃−εL
γ (k) dk + (1− βV )

α
1−α

∫ m̃+εR

m̃

γ (k) dk +D

) ρ(1−α)
α(1−ρ)

di,

But given (A-7), we have that
∫ m̃
m̃−εL γ (k) dk =

∫ m̃+εR
m̃

γ (k) dk, and so these two expressions are equal.

In order to compare the relative size of Π1 and Π2, it thus suffices to compare profits associated only with

the intervals (m̃ − εL, m̃) and (m̃, m̃ + εR). Again invoking equation (A-8), and after some manipulations,
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we find that:

Π1 −Π2 ∝ (βV − βO)

(A+ (1− βV )
α

1−α

∫ m̃

m̃−εL
γ (i) di

) ρ(1−α)
α(1−ρ)

+

(
A+ (1− βO)

α
1−α

∫ m̃

m̃−εL
γ (i) di

) ρ(1−α)
α(1−ρ)

−

(
A+ (1− βO)

α
1−α

∫ m̃

m̃−εL
γ (i) di+ (1− βV )

α
1−α

∫ m̃+εR

m̃

γ (i) di

) ρ(1−α)
α(1−ρ)

−A
ρ(1−α)
α(1−ρ)

 .
Since βV − βO > 0, it suffices to show that the expression in square parentheses is negative. To see

this, consider the function f(y) = y
ρ(1−α)
α(1−ρ) . Simple differentiation will show that for y, a > 0 and b ≥ 0,

f(y + a+ b)− f(y + b) is an increasing function in b when ρ > α. Hence, (y + a+ b)
ρ(1−α)
α(1−ρ) − (y + b)

ρ(1−α)
α(1−ρ) >

(y + a)
ρ(1−α)
α(1−ρ) − (y)

ρ(1−α)
α(1−ρ) . Setting y = A, a = (1− βO)

α
1−α

∫ m̃
m̃−εL γ (i) di and b = (1− βV )

α
1−α

∫ m̃
m̃−εL γ (i) di,

it follows that the term in square brackets is negative, so Π1−Π2 < 0. This yields the desired contradiction

as profits can be strictly increased by switching to the organizational mode that yields profits Π2.

The proof for the ρ < α case can be established using an analogous proof by contradiction. The limit

values in this case imply that it is optimal to integrate stage 0. One can then show that if any stages are to be

outsourced, they occur downstream to all the integrated stages, so that there is a unique cutoff m∗S ∈ (0, 1]

with all stages prior to m∗S being integrated and all stages after m∗S being outsourced.

A-1.4 Derivation of m∗
C and m∗

S Thresholds

Consider first the complements case (ρ > α), in which all stages upstream from m∗C are outsourced, while

all stages downstream from m∗C are integrated. We can then use (A-8) to express profits as:

πF = Θ
α(1− ρ)

ρ (1− α)
βO (1− βO)

ρ
1−ρ

(∫ mC

0

(
ψ (k)

c (k)

) α
1−α

dk

) ρ(1−α)
α(1−ρ)

(A-9)

+Θ
α(1− ρ)

ρ (1− α)
βV


(

(1− βO)
α

1−α
∫mC
0

(
ψ(k)
c(k)

) α
1−α

dk + (1− βV )
α

1−α
∫ 1

mC

(
ψ(k)
c(k)

) α
1−α

dk

) ρ(1−α)
α(1−ρ)

−
(

(1− βO)
α

1−α
∫mC
0

(
ψ(k)
c(k)

) α
1−α

dk

) ρ(1−α)
α(1−ρ)

 .
Taking the first-order-condition with respect to the threshold mC and rearranging, we then find:

(βV − βO) (1 − βO)
ρ

1−ρ = βV

(
(1 − βO)

α
1−α − (1 − βV )

α
1−α

)(1 − βO)
α

1−α + (1 − βV )
α

1−α

∫ 1

m∗
C

(ψ (k) /c (k))
α

1−α dk∫m∗
C

0
(ψ (k) /c (k))

α
1−α dk


ρ−α
α(1−ρ)

,

from which equation (11) can easily be obtained. Notice that for a strictly interior solution, i.e., m∗C ∈ (0, 1),

the right-hand side of (11) would need to be smaller than one, which in turn requires:(
1− βO
1− βV

)− α
1−α

>
βO
βV

,

or simply βV (1− βV )
α

1−α > βO (1− βO)
α

1−α , as claimed in the main text.

The threshold in the substitutes case can be derived in an analogous way. In fact, it is straightforward

to see that mS will be chosen to maximize a profit function identical to that in (A-9) with βO replacing βV
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throughout, and vice versa. As a result, m∗S is given by:

∫m∗S
0

(ψ (k) /c (k))
α

1−α di∫ 1

0
(ψ (k) /c (k))

α
1−α di

=

1 +

(
1− βV
1− βO

) α
1−α


 βV

βO
− 1(

1−βV
1−βO

)− α
1−α − 1


α(1−ρ)
ρ−α

− 1



−1

. (A-10)

A-1.5 Derivation of Equation (12) and Proposition 2

In the extension in Section 2.2.A, recall that the profits of the firm are given by: π̃F = πF −
∫ 1

0
(ψ(i))φ

µ(i) di,

where the second term captures the contracting costs. Focus first on the πF term.

Consider the complements case. We begin by plugging equation (11), which pins down the m∗C threshold,

into the profit function (A-9). After a few simplifications, this delivers:

πF = Θ
α (1− ρ)

ρ (1− α)

[∫ 1

0

(
ψ (i)

c (i)

) α
1−α

di

] ρ(1−α)
α(1−ρ)

(1− βO)
ρ

1−ρ (HC)
ρ(1−α)
α(1−ρ)

(βO − βV ) + βV

 1− βO
βV

1−
(

1−βO
1−βV

)− α
1−α


ρ(1−α)
ρ−α

 ,
where:

HC=

1 +

(
1− βO
1− βV

) α
1−α


 1− βO

βV

1−
(

1−βO
1−βV

)− α
1−α


α(1−ρ)
ρ−α

− 1



−1

.

Hence, we can write profits as:

πF = Θ
α (1− ρ)

ρ (1− α)

[∫ 1

0

(
ψ (i)

c (i)

) α
1−α

di

] ρ(1−α)
α(1−ρ)

ΓC (βV , βO, ρ, α) .

In the substitutes case, we have an analogous expression:

πF = Θ
α (1− ρ)

ρ (1− α)

[∫ 1

0

(
ψ (i)

c (i)

) α
1−α

di

] ρ(1−α)
α(1−ρ)

(1− βV )
ρ

1−ρ (HS)
ρ(1−α)
α(1−ρ)

(βV − βO) + βO

 1− βV
βO

1−
(

1−βV
1−βO

)− α
1−α


ρ(1−α)
ρ−α

 ,
where:

HS=

1 +

(
1− βV
1− βO

) α
1−α


 1− βV

βO

1−
(

1−βV
1−βO

)− α
1−α


α(1−ρ)
ρ−α

− 1



−1

,

so that:

πF = Θ
α (1− ρ)

ρ (1− α)

[∫ 1

0

(
ψ (i)

c (i)

) α
1−α

di

] ρ(1−α)
α(1−ρ)

ΓS (βV , βO, ρ, α) .
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Overall, we then see that profits can be expressed compactly as:

πF = Θ
α (1− ρ)

ρ (1− α)

[∫ 1

0

(
ψ (i)

c (i)

) α
1−α

di

] ρ(1−α)
α(1−ρ)

Γ (βV , βO) , (A-11)

where:

Γ (βV , βO) =

{
ΓC (βV , βO, ρ, α) if ρ > α

ΓS (βV , βO, ρ, α) if ρ < α
.

It is straightforward to verify that the expression for ΓS (βV , βO, ρ, α) is identical to that for ΓC (βV , βO, ρ, α),

except for the fact that βV is replaced by βO and βO is replaced by βV .

Obtaining equation (12) from the more general equation (A-11) is then trivial. Notice, however, that

when studying the optimal choice of ψ (m) that maximizes π̃F , the first-order condition with respect to ψ(m)

now delivers that, for two inputs at stages m and m′, we have:(
ψ (m) /c (m)

ψ (m′) /c (m′)

)φ− α
1−α

=
µ (m)

µ (m′)

(
c(m)

c(m′)

)−φ
, (A-12)

which generalizes equation (13) in the main text. Moreover, one can show that the second-order condition

with respect to ψ(m), when evaluated at the optimal ψ(m), simplifies to:

ρ− α
(1− α)(1− ρ)

(ψ(m)/c(m))
α

1−α∫ 1

0
(ψ(i)/c(i))

α
1−α di

+
α

1− α
− φ < 0.

In particular, the restriction: φ > α/ (1− α) is necessary to ensure that the second-order condition holds in

the complements case. Equation (A-12) thus illustrates that the ratio ψ (m) /c (m) will tend to comove with

contractibility along the value chain as long as contractibility and marginal costs are not positively correlated.

But notice that plugging (A-12) into (A-11), we have that the effect of a reduction in the marginal cost of

a given stage m will be increasing in the level of contractibility µ (m). As a result, if we were to interpret

the path of marginal costs as being the outcome of an optimal global sourcing model, then we would expect,

other things equal, that the firm would be particularly willing to achieve marginal cost reductions for highly

contractible stages, thus resulting in a negative correlation between c (m) and µ (m).

Turning now specifically to Proposition 2, we have developed the argument in the main text that the

characterization of the optimal organizational mode from Proposition 1, in particular how this hinges on

whether ρ is greater or less than α, continues to hold. This is because these predictions hold taking the profile

of the ψ(m)’s as given; the mapping of these ψ(m)’s to heterogeneous contractibility across stages does not

detract from this conclusion. Assuming that marginal costs of production are constant (c(m) = c) across all

stages m, the optimal level of the ψ(m)’s that will be specified in the initial contract varies inversely with

the exogenous contracting cost 1/µ(m) pertaining to that stage. We thus associate a larger ψ(m) with a

higher degree of contractibility, in the sense that it is less costly to contract upon ψ(m).

The second part of Proposition 2 speaks to how an increase in the contractibility of upstream relative

to downstream inputs affects the m∗C and m∗S thresholds. To ease notation, define: ψ̃(m) ≡ ψ(m)
α

1−α . In

the complements case, in light of equation (11), the natural notion of what constitutes a greater degree of

“upstream contractibility” is an increase in the integral of the ψ̃(m)’s over all m ∈ [0,m∗C), that nevertheless

holds the overall contractibility of the production process constant. In differential calculus notation, this
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translates to:
∫m∗C
0

dψ̃(m)dm > 0 and
∫ 1

0
dψ̃(m)dm = 0. Taking the total derivative of (11), one obtains:

ψ̃(m∗C)dm∗C +

∫ m∗C

0

dψ̃(m)dm = 0,

from which it follows that dm∗C < 0 in response to an increase in upstream contractibility, as claimed in

the proposition. For the substitutes case, a similar argument can be applied to (A-10) to establish that

dm∗S < 0 in response to a differential change in the profile of the ψ̃(m)’s that satisfies:
∫m∗S
0

dψ̃(m)dm > 0

and
∫ 1

0
dψ̃(m)dm = 0.

A-1.6 Proof of Proposition 3

With firm heterogeneity in core productivity and incorporating fixed costs of integration, the firm’s profits

are now given by: πF −
∫ 1

0
fV 1(β(i) = βV )di, where 1(βi = βV ) is an indicator function equal to 1 if and

only if stage i is integrated by the firm. The proof is presented below for the complements case; that for the

substitutes case follows in analogous fashion.

Suppose that ρ > α. We first show that despite the introduction of fixed costs of integration, the

optimal organizational mode continues to feature outsourcing of stages [0,m∗C) up to a cutoff stage m∗C , and

integration for all stages [m∗C , 1] further downstream. This is established through a proof by contradiction.

Suppose there exists a m̃ ∈ (0, 1), such that there is a non-zero measure of integrated stages immediately

upstream of m̃ and a non-zero measure of outsourced stages immediately downstream of it. Pick two positive

constants εL and εR satisfying equation (A-7); these two constants can always be chosen to be sufficiently

small so that (m̃ − εL, m̃) lies within the subset of integrated stages immediately upstream of m̃, and

(m̃, m̃+ εR) is within the subset of outsourced stages immediately downstream of m̃.

If εL ≥ εR, compare profits under the organizational mode where stages (m̃− εL, m̃) are integrated and

stages (m̃, m̃+ εR) are outsourced, against an alternative where (m̃− εL, m̃) is outsourced and (m̃, m̃+ εR)

is integrated, holding the organizational decisions over all other stages constant. The proof in Section A-

1.3 showed that πF is strictly higher under the latter organizational mode. The fixed costs of integration

that are incurred would also be (weakly) lower under the latter option, since a (weakly) smaller measure

of stages is integrated. This alternative organizational mode is thus more profitable, and yields the desired

contradiction.

If instead εL < εR, a more involved argument is needed. Compare now profits under the organizational

mode where stages (m̃− εL, m̃) are integrated and stages (m̃, m̃+ εL) are outsourced, versus an alternative

where (m̃ − εL, m̃) is outsourced and (m̃, m̃ + εL) is integrated, holding the organizational decisions over

all other stages constant. Let the profits associated with the former set of organizational decisions be Πf
1 ,

while that for the latter be Πf
2 . By construction, the incurred fixed costs of integration are exactly equal

under both organizational modes, so one can focus solely on πF . Bearing in mind the expression for πF from

(A-8), consider the respective contribution to profits of: (i) stages in [0, m̃ − εL]; (ii) those in (m̃ − εL, m̃);

(iii) those in (m̃, m̃+ εL); and (iv) stages in [m̃+ εL, 1].

It is straightforward to see that the contribution of stages in the first region is identical in both Πf
1 and

Πf
2 . As for the fourth region, the contribution of these stages to Πf

1 is:

Θ

∫ 1

m̃+εL

β(i)
(
Af + (1− βV )

α
1−α Bf + (1− βO)

α
1−α Cf +Df

) ρ−α
α(1−ρ)

(1− β(i))
α

1−α γ(i)di,

where we define: γ (i) ≡ (ψ (i) /c (i))
α

1−α , Af ≡
∫ m̃−εL
0

(1− β (k))
α

1−α γ (k) dk, Bf ≡
∫ m̃
m̃−εL γ (k) dk, Cf ≡

7



∫ m̃+εL
m̃

γ (k) dk, and Df ≡
∫ i
m̃+εL

(1− β (k))
α

1−α γ (k) dk. On the other hand, the contribution from these

stages to Πf
2 is equal to:

Θ

∫ 1

m̃+εL

β(i)
(
Af + (1− βO)

α
1−α Bf + (1− βV )

α
1−α Cf +Df

) ρ−α
α(1−ρ)

(1− β(i))
α

1−α γ(i)di.

Since εL < εR, we have: Bf =
∫ m̃
m̃−εL γ(k)dk =

∫ m̃+εR
m̃

γ(k)dk >
∫ m̃+εL
m̃

γ(k)dk = Cf . Bear in mind also

that: (1− βO)
α

1−α > (1− βV )
α

1−α . Comparing the last two equations above, it follows that when ρ > α, the

stages in [m̃+ εL, 1] contribute more to profits in Πf
2 than in Πf

1 .

It remains to compare the relative contributions due to the middle two sets of stages, i.e., (m̃ − εL, m̃)

and (m̃, m̃+ εL). Let Π̃f
1 refer to the profits under Πf

1 that accrue from these subsets of stages, and likewise

define Π̃f
1 analogously for Πf

2 . Using (A-8) and after some algebra, it can be shown that:

Π̃f
1 − Π̃f

2 ∝ (βV − βO)

[(
Af + (1− βV )

α
1−α Bf

) ρ(1−α)
α(1−ρ)

+
(
Af + (1− βO)

α
1−α Bf

) ρ(1−α)
α(1−ρ) −

(
Af
) ρ(1−α)
α(1−ρ)

]

− βV
(
Af + (1− βO)

α
1−α Bf + (1− βV )

α
1−α Cf

) ρ(1−α)
α(1−ρ)

+ βO

(
Af + (1− βV )

α
1−α Bf + (1− βO)

α
1−α Cf

) ρ(1−α)
α(1−ρ)

We now proceed to show that if the value of εL that was initially chosen was sufficiently small, then Π̃f
1−Π̃f

2 <

0. Observe that Π̃f
1 − Π̃f

2 = 0 at εL = 0. Given this, it then suffices to show that ∂
∂εL

(
Π̃f

1 − Π̃f
2

)
< 0 at

εL = 0. Differentiating the above expression with Leibniz’s rule yields:

∂

∂εL

(
Π̃f

1 − Π̃f
2

)
∝ (βV − βO)

(
Af + (1− βO)

α
1−α Bf

) ρ−α
α(1−ρ)

(
− (1− βV )

α
1−α γ(m̃− εL) + (1− βO)

α
1−α γ(m̃− εL)

)
− βV

(
Af + (1− βO)

α
1−α Bf + (1− βV )

α
1−α Cf

) ρ−α
α(1−ρ)

×
(
− (1− βV )

α
1−α γ(m̃− εL) + (1− βO)

α
1−α γ(m̃− εL) + (1− βV )

α
1−α γ(m̃+ εL)

)
+ βO

(
Af + (1− βV )

α
1−α Bf + (1− βO)

α
1−α Cf

) ρ−α
α(1−ρ)

(1− βO)
α

1−α γ(m̃+ εL).

The above steps use the fact that: (i) ∂
∂εL
Af = − (1− βV )

α
1−α γ(m̃ − εL), since for εL sufficiently small,

m̃− εL is within the positive measure of stages immediately upstream of m̃ that is initially integrated; (ii)
∂
∂εL
Bf = γ(m̃− εL); and (iii) ∂

∂εL
Cf = γ(m̃+ εL). As εL −→ 0, the above simplifies to: ∂

∂εL

(
Π̃f

1 − Π̃f
2

)
∝

−(βV −βO) (1− βV )
α

1−α (A)
ρ−α
α(1−ρ) γ(m̃) < 0. It follows that Π̃f

1 − Π̃f
2 < 0 when εL is positive but sufficiently

small. Summarizing the comparison of profits across all four subsets of stages under Πf
1 and Πf

2 , the

alternative organizational mode that generates Πf
2 delivers higher profits than Πf

1 , which yields the desired

contradiction once again. This concludes the proof that the optimal organizational mode remains as described

in Proposition 2, even though fixed costs of integration have been introduced.

To solve for the cutoff stage m∗C in the complements case, we appeal to the expression for πF in (A-9).

Taking the first-order condition with respect to mC in the profit function πF −
∫ 1

0
fV 1(β(i) = βV )di =
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πF − (1−mC)fV and rearranging, this delivers the implicit function that pins down m∗C :

(
ψ (m∗C)

c (m∗C)

) α
1−α

[∫ m∗C

0

(
ψ (k)

c (k)

) α
1−α

dk

] ρ−α
α(1−ρ)

×
(

1− βO
βV

)
−

(
1−

(
1− βV
1− βO

) α
1−α
)1 +

(
1− βV
1− βO

) α
1−α

∫ 1

m∗C

(
ψ(k)
c(k)

) α
1−α

dk∫m∗C
0

(
ψ(k)
c(k)

) α
1−α

dk


ρ−α
α(1−ρ)

 =
fV

ΨAθ
ρ

1−ρ
,

(A-13)

where Ψ = (1− βO)
ρ

1−ρ βV
ρ
α

(
1−ρ
1−α

) ρ−α
α(1−ρ)

ρ
ρ

1−ρ . Note that in the special case of fV = 0, (A-13) simplifies to

the expression for m∗C in the benchmark model in (11).

It remains to show that the predictions related to how “upstream contractibility” affects the cutoff stage

carry through even in the presence of fixed costs of integration. As in Section A-1.5, suppose c(m) = c for all

stages and define ψ̃(m) ≡ ψ(m)
α

1−α . Consider the effects of an increase in upstream contractibility, wherein:∫m∗C
0

dψ̃(m)dm > 0 while
∫ 1

m∗C
dψ̃(m)dm = −

∫m∗C
0

dψ̃(m)dm < 0, so that
∫ 1

0
dψ̃(m)dm = 0. Denote the

left-hand side of equation (A-13) by F (m∗C). Taking the total derivative of (A-13), one obtains:

0 = F ′(m∗C)dm∗C + ψ̃(m∗C)
ρ− α
α(1− ρ)

[∫ m∗C

0

ψ̃ (k) dk

] ρ−α
α(1−ρ)−1

G(m∗C)

∫ m∗C

0

dψ̃ (k) dk,

where:

G(m∗C) =

(
1− βO

βV

)
−

(
1−

(
1− βV
1− βO

) α
1−α
)2
1 +

(
1− βV
1− βO

) α
1−α

∫ 1

m∗C
ψ̃ (k) dk∫m∗C

0
ψ̃ (k) dk


ρ−α
α(1−ρ)−1

>

(
1− βO

βV

)
−

(
1−

(
1− βV
1− βO

) α
1−α
)1 +

(
1− βV
1− βO

) α
1−α

∫ 1

m∗C
ψ̃ (k) dk∫m∗C

0
ψ̃ (k) dk


ρ−α
α(1−ρ)

=
F (m∗C)

ψ̃(m∗C)

[∫ m∗C

0

ψ̃ (k) dk

]− ρ−α
α(1−ρ)

.

This last step follows from a substitution that uses the first-order condition for m∗C . Clearly, the coefficient

of the
∫m∗C
0

dψ̃ (k) dk term in the total derivative is positive in the complements case. Recall also that the

second-order condition for m∗C implies that F ′(m∗) > 0. A quick inspection of the total derivative then

shows that dm∗C < 0 when
∫m∗C
0

dψ̃ (k) dk > 0. Thus, the response of the cutoff stage to a greater degree

of upstream contractibility continues to be characterized by the statement in Proposition 2, even in this

extension of the model.

As a further consequence of this argument, it is in general not straightforward to sign the cross-partial

effect of θ and upstream contractibility on the cutoff stage, m∗C , as this would require making non-standard

assumptions regarding the third-derivative of the firm’s profit function, i.e., on the behavior of F ′′(m∗C).

This is why we do not pursue specifications in the empirics that involve triple interactions between the ρ

quintiles, upstream contractibility, and firm productivity.
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A-1.7 Proof of Proposition 4

We illustrate this for the complements case (ρ > α); the mechanics of the proof carry over to the substitutes

case. Suppose to the contrary that I0 ≡ (m̃, m̃ + ε) ∈ Ω is a positive measure of discretionarily outsourced

stages, located downstream of a positive measure of integrated stages. Denote this latter positive measure

of integrated stages by I1, where I1 ∈ Ω by definition. There are two cases to consider: (i) I1 is immediately

upstream of m̃, i.e., I1 = (m̃ − ε̃, m̃), for some ε̃ > 0; and (ii) I1 is not immediately upstream of m̃, i.e.,

I1 = (m1 − ε̃,m1), where m1 < m̃ and [m1, m̃] ∈ Υ, i.e, the intervals I0 and I1 are separated by a positive

measure of exogenously outsourced stages.

Consider first case (i). Without loss of generality, we can select two positive constants εL and εR such

that εL, εR < min{ε, ε̃}, which moreover satisfy equation (A-7). The same argument from the proof of

Proposition 1 in Section A-1.3 can then be applied: If we were to interchange the organizational mode, to

instead outsource the stages in (m̃− εL, m̃) and integrate the stages in (m̃, m̃+ εR), this necessarily results

in a strict increase in profits. This yields the desired contradiction, as it cannot then be optimal to have the

stages in (m̃− ε̃, m̃) integrated, while those in (m̃, m̃+ ε) are discretionarily outsourced.

Consider next case (ii). Denote by Π̃1 the configuration of organizational modes in which the stages in

I1 = (m1 − ε̃,m1) are integrated, while those in I0 = (m̃, m̃ + ε) are discretionarily outsourced. We will

compare this against Π̃2, which is the profits from the configuration where I1 is instead outsourced and I0

is integrated, holding the organizational mode of all other stages in [0,m1 − εL], [m1, m̃], and [m̃ + εR, 1]

constant. Note in particular that the stages in [m1, m̃] are all exogenously outsourced. We now select εL

and εR, so that 0 < εL, εR < min{ε, ε̃} and:∫ m1

m1−εL
(ψ (i) /c (i))

α/(1−α)
di =

∫ m̃+εR

m̃

(ψ (i) /c (i))
α/(1−α)

di.

We now use the expression for firm profits from (A-8), and distinguish between five sets of stages: (i)

all stages upstream of m1 − εL; (ii) stages in (m1 − εL,m1); (iii) in [m1, m̃]; (iv) in (m̃, m̃ + εR); and (v)

in [m̃+ εR, 1]. Using the same arguments as in Section A-1.3, the profits associated with both the first and

fifth sets of stages can be shown to cancel out exactly when comparing their contributions to Π̃1 and Π̃2. As

for the remaining three sets of stages, one can show after some algebra that:

Π̃1 − Π̃2 ∝ (βV − βO)

−Ã ρ(1−α)
α(1−ρ) +

(
Ã+ (1− βV )

α
1−α

∫ m1

m1−εL
γ(k)dk

) ρ(1−α)
α(1−ρ)

+

(
Ã+ (1− βO)

α
1−α

∫ m1

m1−εL
γ(k)dk + (1− βO)

α
1−α

∫ m̃

m1

γ(k)dk

) ρ(1−α)
α(1−ρ)

−

(
Ã+ (1− βO)

α
1−α

∫ m1

m1−εL
γ(k)dk + (1− βO)

α
1−α

∫ m̃

m1

γ(k)dk + (1− βV )
α

1−α

∫ m̃+εR

m̃

γ(k)dk

) ρ(1−α)
α(1−ρ)

 ,
where: γ (k) = (ψ (k) /c (k))

α
1−α , and: Ã =

∫m1−εL
0

((1− β (k))ψ (k) /c (k))
α

1−α dk. Again, we can show that

Π̃1 − Π̃2 < 0 by invoking the inequality: (y + a+ b)
ρ(1−α)
α(1−ρ) − (y + b)

ρ(1−α)
α(1−ρ) > (y + a)

ρ(1−α)
α(1−ρ) − (y)

ρ(1−α)
α(1−ρ) , which

holds when ρ > α, and substituting in: y = Ã, a = (1− βO)
α

1−α
∫m1

m1−εL γ(k)dk + (1− βO)
α

1−α
∫ m̃
m1

γ(k)dk

and b = (1− βV )
α

1−α
∫ m̃+εR
m̃

γ(k)dk = (1− βV )
α

1−α
∫m1

m1−εL γ(k)dk.
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A-2 Data Appendix

A-2.1 Descriptive Statistics

Table A-1

Firm Characteristics

10th Median 90th Mean Std Dev

A: Firm variables

All (320,254 obs.)
Number of Establishments (incl. self) 1 1 1 1.22 3.44
Number of countries (incl. self) 1 1 1 1.05 0.62
Number of integrated SIC codes 1 2 3 1.95 2.21
Year started 1948 1984 1999 1976.84 24.68
Log (Total employment) 3.045 3.807 5.557 4.088 1.080
Log (Sales in USD) (288,627 obs.) 12.522 15.202 17.059 14.803 2.573
Log (Sales/Employment) (288,627 obs.) 8.479 11.429 12.545 10.731 2.635

MNCs only (6,370 obs.)
Number of Establishments (incl. self) 2 3 17 8.48 22.74
Number of countries (incl. self) 2 2 6 3.47 3.64
Number of integrated SIC codes 2 5 17 8.10 11.88
Year started 1917 1968 1995 1960.29 33.88
Log (Total employment) 3.912 5.737 8.522 6.031 1.788
Log (Sales in USD) (5,891 obs.) 15.895 17.997 20.934 18.208 1.978
Log (Sales/Employment) (5,891 obs.) 11.229 12.145 13.040 12.110 0.921

Integrated inputs (All firms)
Total Requirements, trij 0.000086 0.003861 0.053442 0.019241 0.052952
Total Requirements, trij (excl. self-SIC) 0.000035 0.001232 0.009568 0.006774 0.036741

B: From Input-Output Tables

Total Requirements, trij 0.000006 0.000163 0.002322 0.001311 0.008026
Baseline Upstreamness measure (mean) 1.838 3.094 4.285 3.097 0.955

C: Ratio-Upstreamness measures

All inputs (mean) 0.494 0.561 0.691 0.590 0.141
All inputs (random pick) 0.495 0.561 0.692 0.590 0.141
Ever-integrated inputs only 0.583 0.656 0.803 0.692 0.179
Manufacturing inputs only 0.548 0.633 0.798 0.657 0.174
Exclude parent sic, manufacturing only 0.590 1.100 2.128 1.269 0.625

Notes: Panels A and C are tabulated for the sample of 320,254 firms with primary SIC in manufacturing and at least 20
employees in the 2004/2005 vintage of D&B WorldBase. In Panel A, the total requirements summary statistics for “Integrated
inputs” are computed over the set of integrated input by parent primary industry pairs pooled across firms in our D&B
WorldBase sample; there are 666,656 such pairs, with the count equal to 336,168 if the self-SIC is removed from consideration.
In Panel B, the summary statistics are computed over the trij coefficients in the 1992 U.S. Input-Output Tables, over all
input (i) and output (j) SIC industry pairs for which j is in manufacturing and trij > 0 (416,349 observations); i includes
both manufacturing and non-manufacturing inputs. In Panel C, the Ratio-Upstreamness measures under “mean” and “random
pick” refer to the treatment adopted for non-manufacturing inputs when mapping from the original IO1992 to SIC codes.
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Table A-2

Industry Characteristics

10th Median 90th Mean Std Dev

Demand elasticityj (all codes) 2.300 4.820 20.032 8.569 10.181
Demand elasticityj (BEC cons. & cap.) 1.983 4.500 20.289 8.819 11.722
Demand elasticityj (BEC cons. only) 2.000 4.639 15.992 8.366 11.881
Demand elasticityj (BEC cons. only) minus αj proxy -9.086 -4.266 7.783 -1.294 12.314
Log (Skilled Emp./Workers)j -1.750 -1.363 -0.778 -1.308 0.377
Log (Equip. Capital/Workers)j 2.869 4.043 5.163 4.039 0.867
Log (Plant Capital/Workers)j 2.517 3.302 4.524 3.426 0.755
Log (Materials/Workers)j 3.898 4.596 5.681 4.702 0.726
R&D intensityj -6.908 -6.097 -3.426 -5.506 1.463
(Value-added/Shipments)j 0.357 0.518 0.660 0.514 0.119
Contractibilityj 0.091 0.362 0.816 0.410 0.265
Upstream-Contractibilityj -0.069 0.018 0.101 0.015 0.069

Notes: The table reports industry-level summary statistics taken over the 459 SIC manufacturing industries, except for: (i)
the “BEC cons. & cap.” elasticity, which is available for only 305 industries; and (ii) the “BEC cons. only” elasticity, which is
available for 219 industries. See Appendix A-2.2 for definitions.

Table A-3

“Bunching” of Integrated Inputs by Quintiles of Upstreamness

Quintile 1 Quintile 2 Quintile 3 Quintile 4 Quintile 5

Quintile 1 0.455 0.057 0.057 0.060 0.041

Quintile 2 0.057 0.011 0.007 0.006 0.004

Quintile 3 0.057 0.007 0.010 0.007 0.005

Quintile 4 0.060 0.006 0.007 0.013 0.008

Quintile 5 0.041 0.004 0.005 0.008 0.007

Notes: Probability matrix constructed using the subset of 34,651 firms that have integrated at least two manufacturing inputs
other than the parent industry self-SIC. For the a-th row and b-th column, we compute the probability that any two randomly
drawn integrated manufacturing input SICs of the firm in question come from the a-th and b-th quintiles of Upstreamnessij
values, where j is the SIC output industry of the firm and the quintiles are taken over all SIC manufacturing inputs i. A simple
average of the probabilities across all 34,651 firms is reported.
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Table A-4

Industry-pair Characteristics

10th Median 90th Mean Std Dev

Upstreamnessij 1.106 1.869 3.384 2.115 0.908
Contractibility-up-to-iij 0.045 0.378 0.976 0.432 0.325
Log (Total Requirements)ij 0.001 0.003 0.022 0.010 0.026
Upstream-Complementarityij -0.009 0.078 0.924 0.252 0.334
Downstream-Complementarityij -0.022 0.028 0.971 0.212 0.340
Diff. Log (Skilled Emp./Workers)ij 0.037 0.270 0.754 0.343 0.289
Diff. Log (Equip. Capital/Workers)ij 0.100 0.681 1.876 0.854 0.706
Diff. Log (Plant Capital/Workers)ij 0.089 0.622 1.635 0.763 0.626
Diff. R&D Intensityij 0.004 1.187 3.242 1.429 1.208
Same-SIC2ij 0 0 1 0.245 0.430
Same-SIC3ij 0 0 0 0.064 0.244

Notes: The table reports summary statistics for the industry-pair variables included in the within-firm regressions, based on
the subset of inputs i that rank in the top 100 manufacturing inputs (by trij value) that have been “ever-integrated” by at
least one parent firm with primary or secondary activity in j. See Appendix A-2.2 for definitions.

A-2.2 Construction of the Industry Variables

Industry Controls

Import demand elasticities: Based on the U.S. HS10 product import demand elasticities estimated by

Broda and Weinstein (2006). These are mapped into SIC categories using concordance weights based on

total U.S. imports between 1989-2006 from Feenstra et al. (2002). For each HS10 code missing an elasticity

value, we assigned a value equal to the trade-weighted average elasticity of the available HS10 codes with

which it shares the same first nine digits. This was done successively up to codes that share the same first

two digits, to assign as many HS10 codes with elasticities as possible. The elasticity for each 4-digit SIC code

is then calculated as the trade-weighted average over its constituent HS10 elasticities. After these steps, 61

out of the 459 4-digit SIC manufacturing codes remain without elasticities, as these codes are not used in

the U.S. import records. This arises because customs is unable to distinguish the source industry of certain

goods on the basis of their physical specimen; for example, it cannot distinguish SIC2011 (Meat Packing

Plants) from SIC2013 (Sausages and Other Prepared Meats). In such instances, U.S. customs assigns all

the goods value to one of the possible SIC codes, and excludes the others. Table 3 in Feenstra et al. (2002)

provides a list of such excluded codes and their corresponding destination codes, allowing us to compute a

trade-weighted elasticity value of the respective destination codes to obtain an elasticity for each excluded

code. There were 51 4-digit SIC codes that were successfully assigned in this way. For the remaining 10

4-digit SIC codes, a trade-weighted average elasticity over all 4-digit SIC categories that share the same first

three digits, and if necessary those that share the same first two digits, was computed.

Contractibility: Following the methodology proposed by Nunn (2007), which in turn relies on the Rauch

(1999) classification of goods as either homogeneous, reference-priced, or differentiated. Rauch’s original

classification is in SITC Rev 2. Based on Feenstra et al. (2002), we obtained a master-list of HS by SITC

Rev 2 by SIC triplets. The Rauch codings for each SITC Rev 2 category are then associated to all the

HS10 products that fall under it. For each SIC 4-digit code, we calculated the specificity of the SIC industry

as the fraction of HS10 constituent codes classified as neither reference-priced nor traded on an organized

exchange. The procedure described above for import demand elasticities is used to assign the specificity

values for missing 4-digit SIC manufacturing codes. The Nunn (2007) measure of contract-intensity of each
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4-digit SIC code is then calculated as a direct requirements weighted-average over the specificities of the

inputs purchased, using direct requirements coefficients from the 1992 U.S. Input-Output Tables. We take

one minus the contract-intensity to get a measure of contractibility.

Factor intensities: From the NBER-CES Manufacturing Industry Database (Becker and Gray, 2009).

Skill intensity is the log of the number of non-production workers divided by total employment. Equipment

capital intensity and plant capital intensity are respectively the log of the equipment and plant capital stock

per worker. Materials intensity is the log of materials purchases per worker. These are computed as averages

over 2001-2005, using the annual data for 4-digit SIC industries. For a small number of industries without

2001-2005 data, we used an average over an earlier in-sample window: for SIC 3292 (Asbetos), a 1986-1990

average was used, while for SIC 2411, 2711, 2721 2731, 2741, 2771, and 3732, a 1991-1995 average was used.

One further variable – value-added over total shipments – was constructed in the same manner.

R&D intensity: From Nunn and Trefler (2013), who calculated R&D expenditures to total sales on an

annual basis for HS6 products, using U.S. firms in the Orbis dataset. For HS6 products missing an R&D

intensity value, a procedure analogous to that described above for the import demand elasticities was used,

to first assign a value using the trade-weighted average over HS codes that share the same first five digits,

and successively until the same first two digits. These are then converted to 4-digit SIC codes using a trade-

weighted average R&D intensity of constituent HS6 codes; all concordance weights are based on total U.S.

imports between 1989-2006, from Feenstra et al. (2002). The procedure described above for import demand

elasticities is used to assign the R&D intensity values for missing 4-digit SIC manufacturing codes.

Industry-pair Controls

Complementarity measures: Based on the methodology proposed by Fan and Lang (2000), and con-

structed using the 1992 U.S. Input-Output Tables. For each pair of SIC 4-digit industries i and j, Upstream-

Complementarityij is equal to the correlation between the direct requirements coefficients of manufactur-

ing inputs k 6= i, j used in the production of i and j respectively. In other words, this is computed as

the correlation between drki and drkj , across all k 6= i, j in the manufacturing sector. For the measure

Downstream-Complementarityij , we first construct the “allocation coefficients”, aik, of each industry i’s use

as an input by industry k, as the share of industry-i gross output that is purchased directly by industry k.1

This measure is then equal to the correlation between aik and ajk, across all buying industries k 6= i, j in

the manufacturing sector.

Differences in factor intensities: For each SIC 4-digit manufacturing industry, the construction of the

skill intensity, equipment capital intensity, plant capital intensity, and R&D intensity measures has been

detailed above. For each of these measures, the absolute value of the difference between each pair of SIC

4-digit industries i and j is then taken.

Same-SIC indicators: Dummy variables identifying “close” industries based on their SIC classification.

Same-SIC2ij is a dummy variable equal to 1 if industries i and j share the same first 2 digits of the SIC1987

classification. Same-SIC3ij is a dummy variable equal to 1 if industries i and j share the same first 3 digits

of the SIC 1987 classification.

1There are instances where a IO1992 manufacturing industry maps to multiple SIC manufacturing codes; when
this is the case, the direct use value of inputs purchased by this IO1992 manufacturing industry is split equally across
the destination SIC output industries in the calculation of the allocation coefficients.
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A-3 Robustness Checks

A-3.1 Cross-Firm Regressions

In this Appendix, we document the robustness tests we conduct on our cross-firm regressions.

In Table A-5, we have verified that prediction P.1 (Cross) of our model holds strongly when using a simple

median cutoff specification to distinguish between the complements from the substitutes case. Column (1)

controls for a dummy variable for whether the industry of the final-good producer has an above-median

demand elasticity, as well as parent country fixed effects. The estimated coefficient on our proxy for the

complements case is negative and significant at the 10% level, already confirming that the propensity to

integrate upstream stages is lower in industries that face a high demand elasticity. This result becomes even

more significant (at the 1% level) as we successively add the output industry variables Xj in column (2), and

the parent controls Wp in column (3). We obtain similar findings when using the refinements of the demand

elasticity ρj based on consumption and capital goods elasticities in column (4), and on consumption goods

elasticities only in column (5). The results hold as well when using the proxy for ρj − αj in column (6).

Figures A-1 and A-2 provide an illustration of the results of Table A-5, using examples from our sample

of firms. The complements case is illustrated by a Danish firm whose primary activity is Boat Building

and Repairing (SIC 3732), an industry that exhibits an above-median ρj and ρj − αj value regardless of

the variant of the demand elasticity proxy considered. The firm has integrated one activity other than its

primary SIC (reflecting the sparsity of integration): Internal Combustion Engines (SIC 3519), one of the

most downstream among the top 100 manufacturing inputs by total requirements value used by SIC 3732.

Conversely, the substitutes case is exemplified by a Swedish producer of Household Furniture (SIC 2519), an

industry that consistently exhibits below-median ρj and ρj−αj values. The firm has integrated one activity

other than its primary SIC: Fabricated Metal Products (SIC 3499), which is among the most upstream of

its top 100 manufacturing inputs.

In Table A-6, we verify the role of upstream contractibility, using a median cutoff specification to distin-

guish between the complements and substitutes cases. Notice that the estimated coefficient on the proxy for

the complements case, 1(ρj > ρmed), is negative and significant, as in the previous regressions in Table A-5.2

Turning to the interactions with Upstream-Contractibilityj , the estimated coefficient in the complements case

is positive and statistically significant, while that in the substitutes case is negative and also highly signifi-

cant. This is entirely in line with prediction P.2 (Cross) of the model: firms that fall under the complements

case should have a lower propensity to integrate upstream stages, but this tendency is weakened among

those industries whose production processes inherently exhibit a greater degree of upstream contractibility.

The converse holds for the substitutes case, with Upstream-Contractibilityj instead lowering the propensity

to integrate upstream stages when ρj < ρmed. Note that these results hold when restricting the elasticity

measure to HS codes classified as consumption or capital goods in column (2), when further limiting this

to consumption goods elasticities only in column (3), and when using the proxy for ρj − αj to distinguish

between the two cases in column (4).

In the remainder of this section, we revert to the quintile elasticity specification to report a series of

robustness checks. In Table A-7, we verify that the results from Table 2 in the main paper continue to hold

when the ratio-upstreamness dependent variable is constructed by restricting the inputs under consideration

to the subset of “ever-integrated” inputs, i.e., the subset of inputs i that have been integrated by at least one

2We have verified that the overall effect of the 1(ρj > ρmed) variable – taking into account its main effect and
that through the interaction term with upstream contractibility – is indeed negative when evaluated at the median
in-sample value of Upstream-Contractibilityj for industries that exhibit an above-median ρj . The p-value for this test
is reported in each column of Table A-6.

15



Figure A-1: Integration Decisions in the Complements Case: An Example
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used in Boat Building & Repairing (SIC 3732)
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Notes: The figure plots the Upstreamnessij measure for the top-100 manufacturing inputs of SIC 3732 (Boat Building and

Repairing), a sector exhibiting an above-median ρj and ρj − αj value regardless of the demand elasticity proxy considered.

The labels on the horizontal axes reflect the SIC codes of its top-100 inputs. The example is based on a firm that has only one

integrated manufacturing input other than the self-SIC; the bold red line illustrates the upstreamness of this input (SIC 3519).

Figure A-2: Integration Decisions in the Substitutes Case: An Example
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a sector exhibiting a below-median ρj and ρj − αj value regardless of the demand elasticity proxy considered. The labels on

the horizontal axes reflect the SIC codes of its top-100 inputs. The example is based on a firm in our sample that has only one
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parent firm in industry j in the WorldBase sample. As discussed in the main paper, this in principle provides

a sharper test of the theory – in light of Proposition 4 – when integration is sparse. Regardless of the elasticity

proxy used, we find that the propensity to integrate upstream stages is lower for firms in higher elasticity

quintiles. Furthermore, we continue to obtain a positive and significant effect of Upstream-Contractibilityj

in the fifth-elasticity quintile, and a negative and significant effect of Upstream-Contractibilityj in the first-

elasticity quintile.

In Table A-8, we show that the results are robust to examining different subsamples of firms. (In

this and subsequent appendix tables, we report results using the ρj proxy constructed from consumption-

goods elasticities only, unless otherwise stated; the results based on the other versions of the ρj proxy are

available on request.) In Column (1), we restrict the sample to single-establishment firms, while in column

(2), we focus on domestic firms (these being either single-establishment firms or multi-establishment firms

with plants in only one country). In both these cases, we continue to find significant effects on the quintile

elasticity dummies, as well as similar patterns on the interaction terms with Upstream-Contractibilityj , i.e., a

negative and significant coefficient for the first-quintile interaction, but the opposite sign for the fifth-quintile

interaction. Column (3) focuses on multinational firms, i.e., parents that have establishments in more than

one country. The empirical findings remain largely intact, despite the fact that the number of observations

decreases substantially with this cut of the dataset.3

In Table A-9, we consider several variables that have appeared elsewhere in the literature on firm-level

vertical integration. Column (1) adds the share of direct input use in the production of j that could be

obtained from within firm boundaries; for each parent, this is the sum of the direct coefficients of the

inputs in I(p) (see Acemoglu et al. 2009, and Alfaro et al. 2016). Column (2) controls for the share of total

requirements value that each parent could in principle source from an overseas affiliate, together with a set of

country fixed effects that indicate whether the parent has an establishment located in the country in question.

Column (3) tests for whether the results might be driven by double marginalization motives, wherein parent

firms would have an incentive to integrate inputs that exhibit a low demand elasticity, for which the markups

charged by arm’s length suppliers would be higher. We control here for the (log) trij-weighted average of the

demand elasticity of inputs used by industry j. In addition, we include a trij-weighted covariance of the input

demand elasticity and Upstreamnessij , to see if the correlation between these elasticities and production line

position might matter. (Here, the demand elasticity associated with each input is computed using only those

constituent HS10 products classified as intermediates by the UN BEC.) Our results remain robust to the

inclusion of these variables, even when they are jointly entered into the regression (column (4)). Interestingly,

the weighted covariance between the input elasticity and upstreamness has a coefficient with the expected

sign (negative and significant), consistent with the interpretation that the presence of demand-inelastic

inputs upstream in the production process would be associated with more upstream integration.4

A key issue that we give due consideration to is how to designate the primary output industry of multi-

product firms. In Table A-10, we present several alternative treatments of parent firms that could be active

as output producers in multiple manufacturing industries. We first verify whether the patterns are similar

when limiting the sample to parents that have only one manufacturing SIC code, i.e., that do not report

any secondary SIC manufacturing activities (columns (1) and (2)). Alternatively, we can designate the

output industry j to be the SIC code of the parent (among the up to six codes reported) that is the most

3The results are also unaffected if we expand the sample by lowering the employment threshold to a minimum of
10 employees, or if we restrict the sample to parents labeled as “global ultimates” (results available upon request).

4We have also explored the robustness of our results to the inclusion of several controls related to various dimensions
of input contractibility, such as: (i) the contractibility of the output industry j itself; (ii) a trij-weighted average
of the contractibility of the inputs used by j; and (iii) a set of interactions between each quintile dummy and a
trij-weighted variance of the contractibility of the inputs used by j. The results are available upon request.
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proximate to final demand, on the basis of the upstreamness measure of Fally (2012) and Antràs et al.

(2012) (columns (3) and (4)). Last but not least, we have constructed Ratio-Upstreamnessjpc taking in turn

each secondary manufacturing SIC code as the parent’s output industry j. The regression in (19) is then

run, pooling across the multiple Ratio-Upstreamnessjpc values per parent (columns (5) and (6)); two-way

clustered standard errors by SIC output industry and by parent firm are reported (Cameron et al. 2011).

Overall, our regression findings remain stable under each of these approaches to account for multi-product

firms.

In Table A-11, we report several checks based on alternative constructions of the ratio-upstreamness

dependent variable. The version of Ratio-Upstreamnessjpc in column (1) is based on Upstreamnessij values

obtained from a random pick when the mapping from I-O to SIC codes yielded multiple matches for a

non-manufacturing input i. In column (2), we alternatively restrict S(j) to the set of manufacturing inputs

used by industry j, Sm(j). Column (3) further drops the parent SIC from Sm(j), to explore the sensitivity

of the results to the default treatment thus far where the parent SIC is always viewed as an integrated

input. (There is a decrease in the number of available observations in column (3), since this variant of the

ratio-upstreamness measure can only be computed for those parent firms that have integrated at least one

other manufacturing input apart from the parent’s primary SIC code.) Our findings are broadly retained,

with the main exception being the final column of Table A-11. There, Upstream-Contractibilityj does reduce

the propensity to integrate upstream in the first quintile (the substitutes case), but the point estimates for

the fifth-quintile interactions (the complements case) are not significantly different from zero. Note, however,

that the overall effect of being in quintile-5 (when evaluated at the median value of Upstream-Contractibilityj)

remains negative and significant, with the p-value from this coefficient test being 0.0043; in other words, the

results in column (3) are still very much consistent with prediction P.1 (Cross).

Table A-12 explores a further robustness check where we restrict the construction of Ratio-Upstreamnessjpc

to more relevant inputs. The findings are largely intact when considering those inputs with trij ≥ 0.001

(columns (1)-(2)), even though this threshold already exceeds the median total requirements coefficient in

the 1992 U.S. I-O Tables (see Table A-1). We lose some precision in our estimates when applying a higher

minimum threshold of either trij ≥ 0.01 (columns (3)-(4)) or trij ≥ 0.05 (columns (5)-(6)), but that should

not come as a surprise as more than 95% of the inputs are discarded in these exercises.

We make two further observations to round off this appendix section related to the cross-firm regressions.

First, following up on column (2) of Table A-11, we have verified that the value-chain position of the “never-

integrated” inputs is not systematically correlated with the quintiles of the various demand elasticity proxies

adopted in this paper. In particular, this means that the greater propensity to outsource upstream stages in

the complements case is not arising simply because “never-integrated” stages tend to be clustered upstream

in high demand elasticity industries. This check is implemented in a series of cross-industry regressions in

Table A-13, where the dependent variable is a (log) trij-weighted average upstreamness of inputs that are

“never-integrated” by firms in industry j relative to the trij-weighted average upstreamness of the “ever-

integrated” inputs in that industry.

Second, we have performed similar robustness tests on the within-sector, cross-firm regressions in Table

3. (These results are available in full upon request.) These findings are entirely robust when adopting the

alternative constructions of the ratio-upstreamness measure seen earlier in Table A-11, such as that based

on a random pick or on manufacturing inputs only. We also obtain similar results when focusing on single-

establishment, domestic, or multinational firms, as in Table A-8, although we lose statistical significance.

This should not come as a surprise, as the regressions related to firm heterogeneity in log output per worker

exploit variation in integration patterns across firms at different productivity levels within an industry, and

some of this variation is lost when focusing on specific subsamples of firms.
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Table A-5

Upstreamness of Integrated vs Non-Integrated Inputs: Median Elasticity Cutoff

Dependent variable: Log Ratio-Upstreamnessjpc

(1) (2) (3) (4) (5) (6)

Ind.(Elasj > Median) -0.0354* -0.0612*** -0.0604*** -0.0593*** -0.1138*** -0.1073***
[0.0204] [0.0188] [0.0185] [0.0215] [0.0261] [0.0275]

Log (Skilled Emp./Workers)j 0.0100 0.0091 0.0111 -0.0219 -0.0082
[0.0243] [0.0245] [0.0278] [0.0360] [0.0364]

Log (Equip. Capital/Workers)j 0.1139*** 0.1120*** 0.0808*** 0.0835*** 0.0960***
[0.0206] [0.0202] [0.0207] [0.0254] [0.0262]

Log (Plant Capital/Workers)j -0.0405* -0.0397* -0.0174 -0.0320 -0.0417
[0.0229] [0.0225] [0.0274] [0.0322] [0.0317]

Log (Materials/Workers)j -0.0279 -0.0289 -0.0393* -0.0059 -0.0129
[0.0222] [0.0222] [0.0229] [0.0296] [0.0294]

R&D intensityj 0.0049 0.0039 0.0103 0.0058 0.0024
[0.0058] [0.0058] [0.0074] [0.0085] [0.0091]

(Value-added/Shipments)j -0.1050 -0.1141 -0.0705 0.1683 0.1600
[0.1278] [0.1286] [0.1294] [0.1587] [0.1573]

Log (No. of Establishments)p 0.0574*** 0.0614*** 0.0661*** 0.0652***
[0.0032] [0.0037] [0.0049] [0.0048]

Year Startedp 0.0001 0.0001 0.0002* 0.0002**
[0.0001] [0.0001] [0.0001] [0.0001]

Multinationalp 0.0102** 0.0147** 0.0259*** 0.0286***
[0.0050] [0.0065] [0.0081] [0.0083]

Log (Total Employment)p -0.0010 -0.0002 -0.0007 -0.0006
[0.0016] [0.0017] [0.0019] [0.0020]

Log (Total USD Sales)p 0.0006 0.0000 0.0001 0.0005
[0.0008] [0.0010] [0.0013] [0.0013]

Elasticity based on: All goods All goods All goods BEC cons. & BEC cons. BEC cons. &
cap. goods goods α proxy

Parent country dummies Y Y Y Y Y Y
Observations 316,977 316,977 286,072 206,490 144,107 144,107
No. of industries 459 459 459 305 219 219
R2 0.0334 0.1372 0.1447 0.1511 0.2051 0.2027

Notes: The sample comprises all firms with primary SIC in manufacturing and at least 20 employees in the 2004/2005 vintage of
D&B WorldBase. The dependent variable is the log ratio-upstreamness measure described in Section 3. A median cutoff dummy
is used to distinguish firms with primary SIC output that are in high vs low demand elasticity industries. Columns (1)-(3) use
a measure based on all available HS10 elasticities from Broda and Weinstein (2006); column (4) restricts this construction to HS
codes classified as consumption or capital goods in the UN BEC; column (5) further restricts this to consumption goods; column (6)
uses the consumption-goods-only demand elasticity minus a proxy for α to distinguish between the complements and substitutes
cases. All columns include parent country fixed effects. Columns (3)-(6) also include indicator variables for whether the reported
employment and sales data respectively are estimated/missing/from the low end of a range, as opposed to being from actual data
(coefficients not reported). Standard errors are clustered by parent primary SIC industry; ***, **, and * denote significance at the
1%, 5%, and 10% levels respectively.
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Table A-6

Effect of Upstream Contractibility: Median Elasticity Cutoff

Dependent variable: Log Ratio-Upstreamnessjpc

(1) (2) (3) (4)

Ind.(Elasj > Median) -0.0910*** -0.1306*** -0.1432*** -0.1372***
[0.0210] [0.0256] [0.0263] [0.0249]

Upstream-Contractibilityj

× Ind.(Elasj < Median) -0.8943*** -1.1148*** -1.2395*** -1.2195***
[0.2869] [0.3838] [0.4345] [0.4363]

× Ind.(Elasj > Median) 0.5044*** 1.0224*** 0.8871*** 0.9451***
[0.1717] [0.1571] [0.1505] [0.1415]

p-value: High elas. at median Upst.-Cont.j [0.0004] [0.0054] [0.0000] [0.0000]

Elasticity based on: All goods BEC cons. & BEC cons. BEC cons. &
cap. goods goods α proxy

Industry controls Y Y Y Y
Firm controls Y Y Y Y
Parent country dummies Y Y Y Y
Observations 286,072 206,490 144,107 144,107
No. of industries 459 305 219 219
R2 0.1882 0.2609 0.2910 0.2888

Notes: The sample comprises all firms with primary SIC in manufacturing and at least 20 employees in the 2004/2005
vintage of D&B WorldBase. The dependent variable is the log ratio-upstreamness measure described in Section 3. Upstream-
Contractibilityj is the total requirements weighted covariance between the contractibility and upstreamness of the manufacturing
inputs used to produce good j. A median cutoff dummy is used to distinguish firms with primary SIC output that are in high vs
low demand elasticity industries. Column (1) uses a measure based on all available HS10 elasticities from Broda and Weinstein
(2006); column (2) restricts this construction to HS codes classified as consumption or capital goods in the UN BEC; column
(3) further restricts this to consumption goods; column (4) uses the consumption-goods-only demand elasticity minus a proxy
for α to distinguish between the complements and substitutes cases. All columns include the full list of SIC output industry
controls, firm-level variables, and parent country dummies that were used in the earlier specifications in Table 1, columns
(3)-(6). Standard errors are clustered by parent primary SIC industry; ***, **, and * denote significance at the 1%, 5%, and
10% levels respectively.
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Table A-7

Effect of Upstream Contractibility: Ever-Integrated Inputs

Dependent variable: Log Ratio-Upstreamnessjpc

(1) (2) (3) (4)

Ind.(Quintile 2 Elasj) -0.0026 -0.0270 -0.0240 0.0640**
[0.0279] [0.0346] [0.0413] [0.0324]

Ind.(Quintile 3 Elasj) -0.1094*** -0.0369 -0.0402 -0.0083
[0.0273] [0.0413] [0.0341] [0.0288]

Ind.(Quintile 4 Elasj) -0.1106*** -0.1388*** -0.1293*** -0.0979***
[0.0321] [0.0272] [0.0307] [0.0347]

Ind.(Quintile 5 Elasj) -0.1264*** -0.1598*** -0.1313*** -0.0834***
[0.0303] [0.0271] [0.0261] [0.0293]

Upstream-Contractibilityj

× Ind.(Quintile 1 Elasj) -1.0938*** -0.8652*** -0.8338*** -1.2735**
[0.3932] [0.2251] [0.3137] [0.5769]

× Ind.(Quintile 2 Elasj) -1.0768*** -0.7624 -0.8880 -1.0878
[0.3664] [0.6365] [0.7960] [0.6967]

× Ind.(Quintile 3 Elasj) 0.8087*** -0.0093 0.0377 0.3803
[0.3008] [0.4820] [0.4977] [0.3569]

× Ind.(Quintile 4 Elasj) 0.2975 0.9812*** 0.9039*** 1.2706***
[0.3192] [0.3072] [0.3313] [0.3851]

× Ind.(Quintile 5 Elasj) 0.6385** 1.0652*** 1.3664*** 1.3721***
[0.2665] [0.3073] [0.2992] [0.2916]

p-value: Q5 at median Upst.-Cont.j [0.0005] [0.0000] [0.0000] [0.0035]

Elasticity based on: All goods BEC cons. & BEC cons. BEC cons. &
cap. goods goods α proxy

Industry controls Y Y Y Y
Firm controls Y Y Y Y
Parent country dummies Y Y Y Y
Observations 286,072 206,490 144,107 144,107
No. of industries 459 305 219 219
R2 0.1320 0.1825 0.1950 0.2146

Notes: The sample comprises all firms with primary SIC in manufacturing and at least 20 employees in the 2004/2005 vintage
of D&B WorldBase. The dependent variable is the log ratio-upstreamness measure described in Section 3, constructed based
on the set of ever-integrated inputs. Upstream-Contractibilityj is the total requirements weighted covariance between the
contractibility and upstreamness of the manufacturing inputs used to produce good j. Quintile dummies are used to distinguish
firms with primary SIC output in high vs low demand elasticity industries. Column (1) uses a measure based on all available
HS10 elasticities from Broda and Weinstein (2006); column (2) restricts this construction to HS codes classified as consumption
or capital goods in the UN BEC; column (3) further restricts this to consumption goods; column (4) uses the consumption-
goods-only demand elasticity minus a proxy for α to distinguish between the complements and substitutes cases. All columns
include the full list of SIC output industry controls, firm-level variables, and parent country dummies used in the specifications
in Table 1, columns (3)-(6). Standard errors are clustered by parent primary SIC industry; ***, **, and * denote significance
at the 1%, 5%, and 10% levels respectively.
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Table A-8

Cross-Firm Regressions: Different Subsamples

Dependent variable: Log Ratio-Upstreamnessjpc

Single-plant firms Domestic firms Multinationals
(1) (2) (3)

Ind.(Quintile 2 Elasj) -0.0461 -0.0487 -0.0870***
[0.0445] [0.0432] [0.0288]

Ind.(Quintile 3 Elasj) -0.0630* -0.0681** -0.0787***
[0.0338] [0.0330] [0.0279]

Ind.(Quintile 4 Elasj) -0.1625*** -0.1619*** -0.1103***
[0.0284] [0.0278] [0.0268]

Ind.(Quintile 5 Elasj) -0.1638*** -0.1649*** -0.1206***
[0.0299] [0.0294] [0.0330]

Upstream-Contractibilityj

× Ind.(Quintile 1 Elasj) -1.8620*** -1.8635*** -1.5014***
[0.4612] [0.4498] [0.3691]

× Ind.(Quintile 2 Elasj) -0.7401 -0.7030 0.2330
[0.8055] [0.7713] [0.3979]

× Ind.(Quintile 3 Elasj) -0.4965 -0.4335 0.2476
[0.3919] [0.3899] [0.2838]

× Ind.(Quintile 4 Elasj) 0.6749*** 0.6890*** 0.5686**
[0.2162] [0.2117] [0.2484]

× Ind.(Quintile 5 Elasj) 1.1025*** 1.1195*** 0.9941***
[0.2321] [0.2286] [0.2949]

p-value: Q5 at median Upst.-Cont.j [0.0000] [0.0000] [0.1000]

Elasticity based on: BEC cons. BEC cons. BEC cons.

Industry controls Y Y Y
Firm controls Y Y Y
Parent country dummies Y Y Y
Observations 117,956 141,617 2,490
No. of industries 219 219 199
R2 0.2990 0.3027 0.2467

Notes: Columns (1)-(3) restrict to different subsets of firms from the 2004/2005 vintage of D&B WorldBase, as described in
each column heading. The dependent variable is the baseline log ratio-upstreamness measure described in Section 3. Upstream-
Contractibilityj is the total requirements weighted covariance between the contractibility and upstreamness of the manufacturing
inputs used to produce good j. Quintile dummies are used to distinguish firms with primary SIC output that are in high vs low
demand elasticity industries; the elasticity measure used is that whose construction is restricted to only the HS10 elasticities
from Broda and Weinstein (2006) classified as consumption goods in the UN BEC. All columns include the full list of SIC
output industry controls, firm-level variables, and parent country dummies that were used in the earlier specifications in Table
1, columns (3)-(6). Standard errors are clustered by parent primary SIC industry; ***, **, and * denote significance at the 1%,
5%, and 10% levels respectively.
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Table A-9

Cross-Firm Regressions: Additional Controls

Dependent variable: Log Ratio-Upstreamnessjpc

(1) (2) (3) (4)

Ind.(Quintile 2 Elasj) -0.0429 -0.0491 -0.0492 -0.0418
[0.0414] [0.0430] [0.0403] [0.0386]

Ind.(Quintile 3 Elasj) -0.0549* -0.0683** -0.0532* -0.0384
[0.0305] [0.0328] [0.0308] [0.0293]

Ind.(Quintile 4 Elasj) -0.1601*** -0.1613*** -0.1437*** -0.1444***
[0.0253] [0.0277] [0.0230] [0.0213]

Ind.(Quintile 5 Elasj) -0.1546*** -0.1642*** -0.1666*** -0.1565***
[0.0269] [0.0292] [0.0258] [0.0233]

Upstream-Contractibilityj

× Ind.(Quintile 1 Elasj) -1.6826*** -1.8554*** -1.6147*** -1.4820***
[0.4083] [0.4451] [0.3643] [0.3275]

× Ind.(Quintile 2 Elasj) -0.6775 -0.6876 -0.5599 -0.6227
[0.7338] [0.7626] [0.7994] [0.7701]

× Ind.(Quintile 3 Elasj) -0.5875 -0.4186 -0.4597 -0.6614*
[0.3681] [0.3854] [0.4041] [0.3966]

× Ind.(Quintile 4 Elasj) 0.5891*** 0.6850*** 0.6457*** 0.5434***
[0.1714] [0.2105] [0.2157] [0.1890]

× Ind.(Quintile 5 Elasj) 0.9582*** 1.1183*** 1.1302*** 0.9516***
[0.2165] [0.2272] [0.2518] [0.2393]

Vertical Integration Indexp -1.1296*** -1.1144***
[0.2065] [0.2044]

Foreign integrated tr. sharep -1.0690*** -0.2034*
[0.1330] [0.1214]

Log (Input Elasticity)j -0.2999*** -0.2853***
[0.1099] [0.1024]

Wtd. Cov. of Input Elasticityj -0.4963*** -0.4330***
and Upstreamnessij [0.1718] [0.1555]

p-value: Q5 at median Upst.-Cont.j [0.0000] [0.0000] [0.0000] [0.0000]

Elasticity based on: BEC cons. BEC cons. BEC cons. BEC cons.

Industry controls Y Y Y Y
Firm controls Y Y Y Y
Parent country dummies Y Y Y Y
Subsidiary country dummies N Y N Y
Observations 144,107 144,107 144,107 144,107
No. of industries 219 219 219 219
R2 0.3526 0.3079 0.3204 0.3655

Notes: The dependent variable is the log ratio-upstreamness measure described in Section 3. Upstream-Contractibilityj is
the total requirements weighted covariance between the contractibility and upstreamness of the manufacturing inputs used to
produce good j. Quintile dummies are used to distinguish firms with primary SIC output that are in high vs low demand
elasticity industries; the elasticity measure used is that whose construction is restricted to only the HS10 elasticities from Broda
and Weinstein (2006) classified as consumption goods in the UN BEC. All columns include the full list of SIC output industry
controls, firm-level variables, and parent country dummies that were used in the earlier specifications in Table 1, columns
(3)-(6). Standard errors are clustered by parent primary SIC industry; ***, **, and * denote significance at the 1%, 5%, and
10% levels respectively.
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Table A-10

Parent Firms with Multiple SIC Output Activities

Dependent variable: Log Ratio-Upstreamnessjpc

Single Most downstream Firm by mfg. output
mfg. output SIC mfg. output SIC SIC (two-way cluster)
(1) (2) (3) (4) (5) (6)

Ind.(Quintile 2 Elasj) -0.0779 -0.0419 -0.0586 -0.0387 -0.0744* -0.0476
[0.0527] [0.0464] [0.0446] [0.0414] [0.0426] [0.0428]

Ind.(Quintile 3 Elasj) -0.1147** -0.1021*** -0.0588 -0.0218 -0.0793* -0.0362
[0.0465] [0.0292] [0.0446] [0.0458] [0.0412] [0.0398]

Ind.(Quintile 4 Elasj) -0.1671*** -0.1521*** -0.1422*** -0.1455*** -0.1645*** -0.1642***
[0.0503] [0.0305] [0.0444] [0.0293] [0.0411] [0.0256]

Ind.(Quintile 5 Elasj) -0.1789*** -0.1521*** -0.1559*** -0.1481*** -0.1834*** -0.1680***
[0.0493] [0.0306] [0.0463] [0.0316] [0.0431] [0.0286]

Upstream-Contractibilityj

× Ind.(Quintile 1 Elasj) -1.9121*** -1.5439*** -1.7766***
[0.4691] [0.4575] [0.4150]

× Ind.(Quintile 2 Elasj) -0.7892 -0.4447 -0.5588
[0.7723] [0.6291] [0.7887]

× Ind.(Quintile 3 Elasj) 0.1059 -0.8775 -0.8416
[0.2068] [0.6081] [0.5438]

× Ind.(Quintile 4 Elasj) 0.6619*** 0.6950*** 0.6808***
[0.2346] [0.2115] [0.2039]

× Ind.(Quintile 5 Elasj) 1.1166*** 1.2290*** 1.1637***
[0.2104] [0.2640] [0.2544]

p-value: Q5 at median Upst.-Cont.j [0.0000] [0.0000] [0.0000]

Elasticity based on: BEC cons. BEC cons. BEC cons. BEC cons. BEC cons. BEC cons.
Industry controls Y Y Y Y Y Y
Firm controls Y Y Y Y Y Y
Parent country dummies Y Y Y Y Y Y
Observations 97,174 97,174 146,829 146,829 211,232 211,232
No. of industries 219 219 219 219 — —
R2 0.2469 0.3308 0.1951 0.2649 0.2204 0.2881

Notes: The dependent variable is the log ratio-upstreamness measure described in Section 3. Upstream-Contractibilityj is
the total requirements weighted covariance between the contractibility and upstreamness of the manufacturing inputs used to
produce good j. Columns (1) and (2) restrict the sample to those firms with at least 20 employees that report only one SIC
manufacturing output activity, this being their primary SIC industry; robust standard errors clustered by output industry are
reported. For columns (3) and (4), we designate as the output industry the SIC manufacturing activity of the firm that has
the smallest upstreamness value with respect to final demand, this being the measure developed by Antràs et al. (2012); robust
standard errors clustered by this output industry are reported. For columns (5) and (6), each observation is a parent firm by
SIC output activity pair, and the ratio-upstreamness variable is constructed treating in turn each SIC manufacturing activity
as the output industry for the firm in question; two-way clustered standard errors – by parent firm and by SIC output activity –
are reported. Quintile dummies are used to distinguish firms with primary SIC output that are in high vs low demand elasticity
industries; the measure used here is based only on HS10 codes classified as consumption goods in the UN BEC. All columns
include the full list of SIC output industry controls, firm-level variables, and parent country dummies that were used in the
earlier specifications in Table 1, columns (3)-(6). ***, **, and * denote significance at the 1%, 5%, and 10% levels respectively.
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Table A-11

Alternative Constructions of Ratio-Upstreamness

Dependent variable: Log Ratio-Upstreamnessjpc

Random pick Mfg. inputs only Mfg. inputs only,
drop parent SIC

(1) (2) (3)

Ind.(Quintile 2 Elasj) -0.0481 -0.0385 -0.0262
[0.0428] [0.0497] [0.0926]

Ind.(Quintile 3 Elasj) -0.0687** -0.0786** -0.0642
[0.0329] [0.0394] [0.0514]

Ind.(Quintile 4 Elasj) -0.1574*** -0.1825*** -0.1388**
[0.0277] [0.0320] [0.0661]

Ind.(Quintile 5 Elasj) -0.1652*** -0.1762*** -0.2958***
[0.0303] [0.0396] [0.0934]

Upstream-Contractibilityj

× Ind.(Quintile 1 Elasj) -1.8583*** -2.1696*** -1.1117*
[0.4454] [0.4819] [0.5749]

× Ind.(Quintile 2 Elasj) -0.6960 -0.9343 0.0021
[0.7602] [0.9046] [0.8379]

× Ind.(Quintile 3 Elasj) -0.4193 -0.2726 -1.8093*
[0.3873] [0.4890] [0.9849]

× Ind.(Quintile 4 Elasj) 0.6473*** 0.8981*** -2.5374***
[0.2126] [0.2504] [0.7379]

× Ind.(Quintile 5 Elasj) 1.1816*** 1.1370*** -0.0754
[0.2803] [0.3822] [1.1158]

p-value: Q5 at median Upst.-Cont.j [0.0000] [0.0000] [0.0043]

Elasticity based on: BEC cons. BEC cons. BEC cons.

Industry controls Y Y Y
Firm controls Y Y Y
Parent country dummies Y Y Y
Observations 144,107 143,846 46,992
No. of industries 219 219 218
R2 0.3059 0.3311 0.1216

Notes: The sample comprises firms with primary SIC in manufacturing and at least 20 employees in the 2004/2005 vintage of
D&B WorldBase. The three columns use variants of the log ratio-upstreamness measure as the dependent variable, as described
in the column headings. “Upstream-Contractibility” is the total requirements weighted covariance between the contractibility
and upstreamness of the manufacturing inputs used to produce good j. Quintile dummies are used to distinguish firms with
primary SIC output that are in high vs low demand elasticity industries; the elasticity measure used is that whose construction
is restricted to only the HS10 elasticities from Broda and Weinstein (2006) classified as consumption goods in the UN BEC. All
columns include the full list of SIC output industry controls, firm-level variables, and parent country dummies that were used
in the earlier specifications in Table 1, columns (3)-(6). Standard errors are clustered by parent primary SIC industry; ***, **,
and * denote significance at the 1%, 5%, and 10% levels respectively.
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Table A-12

Dropping Inputs with Small Total Requirements Coefficients

Dependent variable: Log Ratio-Upstreamnessjpc limited to inputs with trij ≥ κ

κ = 0.001 κ = 0.01 κ = 0.05
(1) (2) (3) (4) (5) (6)

Ind.(Quintile 2 Elasj) -0.0960** -0.0772** -0.0371 -0.0573* 0.0936 -0.0691
[0.0480] [0.0318] [0.0292] [0.0304] [0.0969] [0.0604]

Ind.(Quintile 3 Elasj) -0.1007** -0.0967*** -0.0169 -0.0672* 0.2292* 0.0901
[0.0456] [0.0306] [0.0402] [0.0380] [0.1159] [0.0986]

Ind.(Quintile 4 Elasj) -0.1584*** -0.1509*** -0.1357*** -0.1416*** -0.2755* -0.3050***
[0.0492] [0.0308] [0.0470] [0.0415] [0.1593] [0.1138]

Ind.(Quintile 5 Elasj) -0.1882*** -0.1624*** -0.1109* -0.1047** 0.0980 0.0943
[0.0493] [0.0299] [0.0597] [0.0469] [0.1768] [0.1472]

Upstream-Contractibilityj

× Ind.(Quintile 1 Elasj) -1.8097*** 0.3782 -2.2377*
[0.4775] [0.7651] [1.1530]

× Ind.(Quintile 2 Elasj) -0.1884 0.7700 0.7183
[0.3140] [0.5218] [0.8877]

× Ind.(Quintile 3 Elasj) 0.2387 1.5469*** -4.8807**
[0.2381] [0.4525] [2.0299]

× Ind.(Quintile 4 Elasj) 0.7049*** 1.2898*** 3.1515***
[0.2172] [0.4787] [0.7650]

× Ind.(Quintile 5 Elasj) 1.4457*** 2.5916*** 4.5668***
[0.2034] [0.3724] [0.7617]

p-value: Q5 at median Upst.-Cont.j [0.0000] [0.0002] [0.7171]

Elasticity based on: BEC cons. BEC cons. BEC cons. BEC cons. BEC cons. BEC cons.

Industry controls Y Y Y Y Y Y
Firm controls Y Y Y Y Y Y
Parent country dummies Y Y Y Y Y Y
Observations 139,053 139,053 81,970 81,970 13,677 13,677
No. of industries 219 219 214 214 98 98
R2 0.3144 0.4308 0.4995 0.6285 0.4950 0.6873

Notes: The sample comprises firms with primary SIC in manufacturing and at least 20 employees in the 2004/2005 vintage of
D&B WorldBase. The dependent variable is the log ratio-upstreamness measure constructed when limiting the set of integrated
and non-integrated inputs under consideration to those with total requirements coefficient respectively greater than or equal to
κ, where κ = 0.001 in columns (1)-(2), κ = 0.01 in columns (3)-(4), and κ = 0.05 in columns (5)-(6). The sample size decreases
with higher κ, as firms that do not have any integrated inputs satisfying trij ≥ κ are dropped. “Upstream-Contractibility”
is the total requirements weighted covariance between the contractibility and upstreamness of the manufacturing inputs used
in the SIC output industry in question. Quintile dummies are used to distinguish firms with primary SIC output that are in
high vs low demand elasticity industries; the measure used here is based only on HS10 codes classified as consumption goods
in the UN BEC. All columns include the full list of SIC output industry controls, parent country dummies, and the full list of
firm-level variables used in the earlier specifications of Table 1, columns (3)-(6). Standard errors are clustered by the parent
primary SIC industry; ***, **, and * denote significance at the 1%, 5%, and 10% levels respectively.
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Table A-13

Diagnostic: Upstreamness of Never- vs Ever-Integrated Inputs

Dependent variable: log
(

Wtd. Avg. Upstreamnessij of Never-Integrated Inputs

Wtd. Avg. Upstreamnessij of Ever-Integrated Inputs

)
(1) (2) (3) (4) (5)

Ind.(Quintile 2 Elasj) 0.0263 0.0213 -0.0006 -0.0228 -0.0142
[0.0201] [0.0191] [0.0253] [0.0336] [0.0326]

Ind.(Quintile 3 Elasj) 0.0284 0.0139 -0.0017 0.0127 0.0272
[0.0214] [0.0203] [0.0239] [0.0318] [0.0306]

Ind.(Quintile 4 Elasj) 0.0000 0.0103 0.0101 0.0108 0.0108
[0.0228] [0.0226] [0.0276] [0.0362] [0.0346]

Ind.(Quintile 5 Elasj) -0.0024 -0.0033 -0.0188 -0.0460 -0.0371
[0.0210] [0.0224] [0.0277] [0.0384] [0.0385]

p-value: F-test, Elasj quintile coeffs. [0.3437] [0.6596] [0.8364] [0.2270] [0.1980]

Elasticity based on: All goods All goods BEC cons. & BEC cons. BEC cons. &
cap. goods goods α proxy

Industry controls N Y Y Y Y
Observations 459 459 305 219 219
R2 0.0093 0.2335 0.2408 0.2918 0.2913

Notes: The sample comprises all SIC manufacturing industries. Robust standard errors are reported; ***, **, and * denote

significance at the 1%, 5%, and 10% levels respectively. For each output industry j, the set of never-integrated inputs is the

list of inputs i that are never found among the SIC activities of D&B parent firms with either primary or secondary output

industry listed as j, while the set of ever-integrated inputs is the list of inputs i that are integrated within firm boundaries by

at least one D&B parent firm with primary or secondary industry listed as j. The D&B parent firms considered are those from

the 2004/2005 vintage with at least 20 employees. The dependent variable is the log ratio of the weighted average upstreamness

of never-integrated to that of ever-integrated inputs, where the weights are proportional to trij . Quintile dummies are used

to distinguish firms with primary SIC output that are in high vs low demand elasticity industries. Columns (1)-(2) use a

measure based on all available HS10 elasticities from Broda and Weinstein (2006); Column (3) restricts this construction to HS

codes classified as consumption or capital goods in the UN BEC; Column (4) further restricts this to consumption goods only;

Column (5) uses the consumption-goods-only demand elasticity minus a proxy for α to distinguish between the complements

and substitutes cases. The p-value reported is that from a F-test with null hypothesis that the coefficients of the Quintile 2

through Quintile 5 Elasj dummies are jointly equal to zero.
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A-3.2 Within-Firm Regressions

In this Appendix, we report a series of additional estimations to verify the robustness of the results of the

within-firm regressions.

In Table A-14, we show that our results concerning the role of upstreamness are robust to restricting

the analysis to specific subsamples of firms, namely single-establishment, domestic, and multinational firms.

In addition to the interactions between Upstreamnessij and the elasticity quintile dummies, the regressions

include the same controls as in columns (5) and (6) in Table 4 in the main paper, namely: the self-SIC

dummy, log trij , the various measures of proximity between industries i and j, as well as parent firm

and input industry fixed effects. Reassuringly, these tests retain the broad patterns seen in Table 4: the

coefficient of Upstreamnessij in the first demand elasticity quintile is positive and significant, while that for

Upstreamnessij in the fifth demand elasticity quintile is negative and significant. This result is consistent with

prediction P.1 (Within) of our model, according to which a firm would be less likely to integrate upstream

inputs in the complements case compared to the substitutes case.

In Table A-15, we check the robustness of our results concerning the role of contractibility when restricting

the analysis to the same subsamples of firms. As in Table 5, we find that the coefficients of the interactions

between Contractibility-up-to-iij and the demand elasticity quintile dummies become larger in the higher

elasticity quintiles. This finding is in line with prediction P.2 (Within), according to which an increase in

the contractibility profile of inputs upstream of i would raise the propensity to integrate input i more in the

complements than in the substitutes case.

Table A-16 shows that the results concerning the role of upstreamness continue to hold in a series of

additional specifications. Column (1) drops firms that do not have an integrated manufacturing input (apart

from the self-SIC) among the top-100 manufacturing inputs as ranked by the total requirements value.5

Alternatively, column (2) retains only those parents that have integrated at least three of their top-100

manufacturing inputs. Note that this is a relatively stringent cut of the data that reduces the size of our

sample substantially, since the median number of integrated SIC codes across firms is equal to two (see Table

A-1). Column (3) adopts a different treatment of the self-SIC code, which is classified mechanically as an

integrated input in our regressions. Here, the self-SIC is instead dropped altogether from the estimation. The

last column reproduces the results when we include all top-100 manufacturing inputs, rather than restricting

the analysis (as has been done in the main paper) to the subset of ever-integrated inputs. The findings

we obtain from these different specifications turn out to be similar to those presented already in Table

4, pointing to a lower propensity to integrate upstream inputs in the complements case compared to the

substitutes case. (Although the fifth-quintile interaction in columns (1) and (4) is marginally insignificant,

the p-value nevertheless confirms that the negative effect of Upstreamnessij in this fifth elasticity quintile

differs significantly from that in the first quintile.)

In Table A-17, we undertake an analogous set of robustness checks for the results concerning the role

of contractibility. The specifications in columns (1)-(4) are as in Table A-16, except that we examine

now the interaction between Contractibility-up-to-iij and the elasticity quintile dummies. The regression

findings here remain consistent with what was seen earlier in Table 5 in the main paper, in accord with

prediction P.2 (Within). In column (5), we further include the full set of elasticity dummies interacted

with Contractibility-at-iij . This variable is given by:
trijconti∑

k∈Sm(j) trkjcontk
. In words, this is the component of

Contractibility-up-to-iij that is accrued at stage i itself. The findings for column (5) confirm that the role of

the profile of contractibility prior to input i remains relevant for explaining integration patterns, even when

5By contrast, the sample used for the within-firm regressions in the main paper drops parents that do not report
any integrated SIC codes in manufacturing (apart from the self-SIC), independently of whether these are among the
top-100 manufacturing inputs in the production of the firm’s primary output activity.
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one controls for the contractibility at input i itself.

Finally, in Table A-18, we examine how upstreamness affects integration choices, when looking separately

at final-good industries where ρj < αj vs ρj > αj . Notice that the effect of upstreamness on integration

is negative across low and high ρj industries, when the industry proximity measures are not included in

the regression (columns (1) and (3)). However, the role of upstreamness is no longer precisely estimated

when we include the industry proximity measures and input fixed effects (columns (2) and (4)). We view

these patterns as a reason to be cautious about using the actual values of ρj and αj to partition the final-

goods industries. Given the limitations of our empirical proxies for ρj and αj , using the quintiles of ρj − αj
to distinguish empirically between the complements and substitutes cases arguably provides more reliable

estimates of the effects of the upstreamness variable on integration decisions within firms.

Table A-14

Integration Decisions within Firms: The Role of Upstreamness
(Different Subsamples)

Dependent variable: Integrationijp

Single-plant Domestic Multinationals
(1) (2) (3)

Upstreamnessij

× Ind.(Quintile 1 Elasj) 0.0036* 0.0036* 0.0051*
[0.0020] [0.0020] [0.0029]

× Ind.(Quintile 2 Elasj) -0.0043 -0.0046 -0.0002
[0.0035] [0.0035] [0.0035]

× Ind.(Quintile 3 Elasj) -0.0018 -0.0025 -0.0101**
[0.0025] [0.0027] [0.0043]

× Ind.(Quintile 4 Elasj) 0.0016 0.0012 -0.0004
[0.0022] [0.0023] [0.0039]

× Ind.(Quintile 5 Elasj) -0.0068** -0.0074** -0.0111**
[0.0033] [0.0034] [0.0049]

p-value: Upstreamnessij , [0.0010] [0.0008] [0.0003]
Quintile 1 minus Quintile 5

Elasticity based on: BEC cons. BEC cons BEC cons.

Observations 1,900,549 2,365,074 102,407
R2 0.5825 0.5748 0.4182
Firm fixed effects Y Y Y
Input industry i fixed effects Y Y Y
Industry i-j controls Y Y Y
No. of i-j pairs 7,225 7,225 6,932
No. of parent firms 32,070 40,281 1,650

Notes: The dependent variable is a 0-1 indicator for whether the SIC input is integrated. Each observation is a SIC input by
parent firm pair, where the set of parent firms comprises those with primary SIC industry in manufacturing and employment
of at least 20, which have integrated at least one manufacturing input apart from the output self-SIC. The sample is restricted
to the set of the top 100 ever-integrated manufacturing inputs, as ranked by the total requirements coefficients of the SIC
output industry. The sample in each column is further restricted to different subsets of firms, as described in each column
heading. The quintile dummies are based on the elasticity measure constructed using only those HS10 elasticities from Broda
and Weinstein (2006) classified as consumption goods in the UN BEC. All columns include parent firm fixed effects and SIC
input industry fixed effects, as well as the i-j industry controls included in columns (5)-(6) of Table 4. Standard errors are
clustered by input-output industry pair; ***, **, and * denote significance at the 1%, 5%, and 10% levels respectively.
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Table A-15

Integration Decisions within Firms: The Role of Contractibility
(Different Subsamples)

Dependent variable: Integrationijp

Single-plant Domestic Multinationals
(1) (2) (3)

Contractibility-up-to-iij
× Ind.(Quintile 1 Elasj) 0.0007 0.0007 0.0100

[0.0060] [0.0063] [0.0106]
× Ind.(Quintile 2 Elasj) 0.0227*** 0.0235*** 0.0168*

[0.0068] [0.0071] [0.0096]
× Ind.(Quintile 3 Elasj) 0.0200*** 0.0208*** 0.0520***

[0.0073] [0.0074] [0.0123]
× Ind.(Quintile 4 Elasj) 0.0109 0.0116 0.0178

[0.0085] [0.0086] [0.0120]
× Ind.(Quintile 5 Elasj) 0.0387*** 0.0406*** 0.0524***

[0.0108] [0.0110] [0.0142]

p-value: Contractibility-up-to-iij , [0.0002] [0.0001] [0.0034]
Quintile 1 minus Quintile 5

Elasticity based on: BEC cons. BEC cons BEC cons.

Observations 1,900,549 2,365,074 102,407
R2 0.5826 0.5749 0.4183
Firm fixed effects Y Y Y
Input industry i fixed effects Y Y Y
Industry i-j controls Y Y Y
No. of i-j pairs 7,225 7,225 6,932
No. of parent firms 32,070 40,281 1,650

Notes: The dependent variable is a 0-1 indicator for whether the SIC input is integrated. Each observation is a SIC input by
parent firm pair, where the set of parent firms comprises those with primary SIC industry in manufacturing and employment of
at least 20, which have integrated at least one manufacturing input apart from the output self-SIC. The sample is restricted to
the set of the top 100 ever-integrated manufacturing inputs, as ranked by the total requirements coefficients of the SIC output
industry. The sample in each column is further restricted to different subsets of firms, as described in each column heading.
The Contractibility-up-to-iij measure is the share of the total-requirements weighted contractibility of inputs that has been
accrued in production upstream of and including input i in the production of output j. The quintile dummies are based on the
elasticity measure constructed using only those HS10 elasticities from Broda and Weinstein (2006) classified as consumption
goods in the UN BEC. All columns include parent firm fixed effects and SIC input industry fixed effects, as well as the i-j
industry controls included in columns (5)-(6) of Table 5. Standard errors are clustered by input-output industry pair; ***, **,
and * denote significance at the 1%, 5%, and 10% levels respectively.
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Table A-16

Integration Decisions within Firms: The Role of Upstreamness
(Further Robustness)

Dependent variable: Integrationijp

# non-self-SIC # integ. Drop self-SIC All Inputs
integ. inputs ≥ 1 inputs ≥ 3

(1) (2) (3) (4)

Upstreamnessij

× Ind.(Quintile 1 Elasj) 0.0061** 0.0050 0.0038* 0.0025**
[0.0030] [0.0045] [0.0021] [0.0013]

× Ind.(Quintile 2 Elasj) -0.0056 -0.0114 -0.0044 -0.0020
[0.0049] [0.0074] [0.0038] [0.0020]

× Ind.(Quintile 3 Elasj) -0.0017 -0.0061 -0.0018 -0.0006
[0.0036] [0.0056] [0.0028] [0.0017]

× Ind.(Quintile 4 Elasj) 0.0028 0.0007 0.0005 0.0018
[0.0034] [0.0054] [0.0024] [0.0015]

× Ind.(Quintile 5 Elasj) -0.0064 -0.0127** -0.0085** -0.0023
[0.0046] [0.0064] [0.0038] [0.0015]

p-value: Upstreamnessij , [0.0039] [0.0016] [0.0005] [0.0020]
Quintile 1 minus Quintile 5

Elasticity based on: BEC cons. BEC cons. BEC cons. BEC cons.

Observations 1,637,457 396,339 2,426,064 4,177,420
R2 0.4808 0.4018 0.1058 0.5627
Firm fixed effects Y Y Y Y
Input industry i fixed effects Y Y Y Y
Industry i-j controls Y Y Y Y
No. of i-j pairs 7,225 7,073 7,063 16,630
No. of parent firms 27,770 6,745 41,931 41,931

Notes: The dependent variable is a 0-1 indicator for whether the SIC input is integrated. Each observation is a SIC input by
parent firm pair, where the set of parent firms comprises those with primary SIC industry in manufacturing and employment of
at least 20, which have integrated at least one manufacturing input apart from the output self-SIC. The sample is restricted to
the set of the top 100 ever-integrated manufacturing inputs, as ranked by the total requirements coefficients of the SIC output
industry, except in column (4) where all the top 100 manufacturing inputs are included. The sample in columns (1) and (2)
is further restricted to different subsets of firms, as described in the column headings. The quintile dummies are based on the
elasticity measure constructed using only those HS10 elasticities from Broda and Weinstein (2006) classified as consumption
goods in the UN BEC. All columns include parent firm fixed effects and SIC input industry fixed effects, as well as the i-j
industry controls included in columns (5)-(6) of Table 4. Standard errors are clustered by input-output industry pair; ***, **,
and * denote significance at the 1%, 5%, and 10% levels respectively.
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Table A-17

Integration Decisions within Firms: The Role of Contractibility
(Further Robustness)

Dependent variable: Integrationijp

# non-self-SIC # integ. Drop self-SIC All Inputs Contractibility
integ. inputs ≥ 1 inputs ≥ 3 at i

(1) (2) (3) (4) (5)

Contractibility-up-to-iij

× Ind.(Quintile 1 Elasj) 0.0033 0.0093 -0.0037 0.0031 -0.0002
[0.0091] [0.0137] [0.0062] [0.0041] [0.0065]

× Ind.(Quintile 2 Elasj) 0.0371*** 0.0492*** 0.0191*** 0.0184*** 0.0279***
[0.0104] [0.0155] [0.0069] [0.0055] [0.0075]

× Ind.(Quintile 3 Elasj) 0.0312*** 0.0398** 0.0140* 0.0148*** 0.0240***
[0.0103] [0.0159] [0.0073] [0.0051] [0.0077]

× Ind.(Quintile 4 Elasj) 0.0207 0.0197 0.0103 0.0072 0.0105
[0.0129] [0.0196] [0.0085] [0.0059] [0.0088]

× Ind.(Quintile 5 Elasj) 0.0529*** 0.0603*** 0.0383*** 0.0225*** 0.0335***
[0.0148] [0.0188] [0.0108] [0.0061] [0.0099]

Contractibility-at-iij

× Ind.(Quintile 1 Elasj) 0.0874***
[0.0272]

× Ind.(Quintile 2 Elasj) -0.0313
[0.0334]

× Ind.(Quintile 3 Elasj) 0.0109
[0.0428]

× Ind.(Quintile 4 Elasj) 0.1021*
[0.0613]

× Ind.(Quintile 5 Elasj) 0.1938
[0.1430]

p-value: Upstreamnessij , [0.0004] [0.0042] [0.0001] [0.0021] [0.0005]
Quintile 1 minus Quintile 5

Elasticity based on: BEC cons. BEC cons. BEC cons. BEC cons. BEC cons.

Observations 1,637,457 396,339 2,426,064 4,177,420 2,467,486
R2 0.4809 0.4018 0.1058 0.5628 0.5649
Firm fixed effects Y Y Y Y Y
Input industry i fixed effects Y Y Y Y Y
Industry i-j controls Y Y Y Y Y
No. of i-j pairs 7,225 7,073 7,063 16,630 7,225
No. of parent firms 27,770 6,745 41,931 41,931 41,931

Notes: The dependent variable is a 0-1 indicator for whether the SIC input is integrated. Each observation is a SIC input by
parent firm pair, where the set of parent firms comprises those with primary SIC industry in manufacturing and employment of
at least 20, which have integrated at least one manufacturing input apart from the output self-SIC. The sample is restricted to
the set of the top 100 ever-integrated manufacturing inputs, as ranked by the total requirements coefficients of the SIC output
industry, except in column (4) where all the top 100 manufacturing inputs are included. The sample in columns (1) and (2) is
further restricted to different subsets of firms, as described in the column headings. The Contractibility-up-to-iij measure is the
share of the total-requirements weighted contractibility of inputs that has been accrued in production upstream of and including
input i in the production of output j. Column (5) further controls for the full set of quintile elasticity dummies interacted
with the Contractibility-at-iij measure, namely the share of the total-requirements weighted contractibility of inputs accrued
at stage i itself. The quintile dummies are based on the elasticity measure constructed using only those HS10 elasticities from
Broda and Weinstein (2006) classified as consumption goods in the UN BEC. All columns include parent firm fixed effects and
SIC input industry fixed effects, as well as the i-j industry controls included in columns (5)-(6) of Table 5. Standard errors are
clustered by input-output industry pair; ***, **, and * denote significance at the 1%, 5%, and 10% levels respectively.
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Table A-18

Within-Firm Regressions: ρj < αj vs ρj > αj

Dependent variable: Integrationijp

ρj < αj ρj > αj

(1) (2) (3) (4)

Upstreamnessij -0.0126*** -0.0070 -0.1170*** 0.0333
[0.0017] [0.0045] [0.0410] [0.0534]

Self-SICij 0.9566*** 0.8380*** 0.8460*** 0.5486***
[0.0066] [0.0262] [0.0476] [0.0781]

Log (Total Requirementsij) 0.0044** 0.0027 -0.0132 0.0340
[0.0022] [0.0021] [0.0183] [0.0239]

Upstream-Complementarityij 0.0169** 0.1679**
[0.0067] [0.0805]

Downstream-Complementarityij 0.0271** -0.0022
[0.0118] [0.0756]

Diff. Log (Skilled Emp./Workers)ij -0.0393*** 0.0230
[0.0105] [0.0583]

Diff. Log (Equip. Capital/Workers)ij -0.0048 -0.0065
[0.0054] [0.0387]

Diff. Log (Plant Capital/Workers)ij -0.0004 -0.0566
[0.0050] [0.0555]

Diff. R&D Intensityij 0.0021 -0.0252
[0.0013] [0.0306]

Same-SIC2ij 0.0272*** -0.1075
[0.0051] [0.1267]

Same-SIC3ij 0.0520*** 0.1365*
[0.0183] [0.0732]

Observations 916,843 846,461 58,389 46,336
R2 0.6763 0.6950 0.6578 0.7306
Firm fixed effects Y Y Y Y
Input industry i fixed effects N N N N
No. of i-j pairs 3252 2745 291 227
No. of parent firms 46,942 41,893 13,039 11,016

Notes: The dependent variable is a 0-1 indicator for whether the SIC input is integrated. Each observation is a SIC input by
parent firm pair, where the set of parent firms comprises those with primary SIC industry in manufacturing and employment
of at least 20, which have integrated at least one manufacturing input apart from the output self-SIC. The sample is restricted
to the set of ever-integrated inputs among the top 100 manufacturing inputs, as ranked by the total requirements coefficients
of the SIC output industry. The sample in columns (1) and (2) comprises firms that fall in output industries where ρj < αj ,
where ρj is based on the elasticity measure constructed using only those HS10 elasticities from Broda and Weinstein (2006)
classified as consumption goods in the UN BEC; the sample in columns (3) and (4) comprises those firms that fall in output
industries where ρj > αj . All columns include parent firm fixed effects. Standard errors are clustered by input-output industry
pair; ***, **, and * denote significance at the 1%, 5%, and 10% levels respectively.
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